Mary A Moran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2731314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ocean's labile <scp>DOC</scp> supply chain. Limnology and Oceanography, 2022, 67, 1007-1021.	3.1	39
2	Growth-stage-related shifts in diatom endometabolome composition set the stage for bacterial heterotrophy. ISME Communications, 2022, 2, .	4.2	6
3	Microbial metabolites in the marine carbon cycle. Nature Microbiology, 2022, 7, 508-523.	13.3	71
4	Diel investments in metabolite production and consumption in a model microbial system. ISME Journal, 2022, 16, 1306-1317.	9.8	13
5	Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME Journal, 2021, 15, 762-773.	9.8	77
6	Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nature Microbiology, 2021, 6, 524-532.	13.3	18
7	Transcriptional activity differentiates families of Marine Group II <i>Euryarchaeota</i> in the coastal ocean. ISME Communications, 2021, 1, .	4.2	2
8	Quantification of Amine- and Alcohol-Containing Metabolites in Saline Samples Using Pre-extraction Benzoyl Chloride Derivatization and Ultrahigh Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC MS/MS). Analytical Chemistry, 2021, 93, 4809-4817.	6.5	17
9	Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environmental Microbiology, 2021, 23, 4532-4546.	3.8	11
10	Assessing the Contribution of Seasonality, Tides, and Microbial Processing to Dissolved Organic Matter Composition Variability in a Southeastern U.S. Estuary. Frontiers in Marine Science, 2021, 8, .	2.5	3
11	Genome Sequences and Metagenome-Assembled Genome Sequences of Microbial Communities Enriched on Phytoplankton Exometabolites. Microbiology Resource Announcements, 2020, 9, .	0.6	5
12	Ecological drivers of bacterial community assembly in synthetic phycospheres. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3656-3662.	7.1	82
13	Microbial metagenomes and metatranscriptomes during a coastal phytoplankton bloom. Scientific Data, 2019, 6, 129.	5.3	36
14	Towards Integrating Evolution, Metabolism, and Climate Change Studies of Marine Ecosystems. Trends in Ecology and Evolution, 2019, 34, 1022-1033.	8.7	28
15	Unprecedented DMSP Concentrations in a Massive Dinoflagellate Bloom in Monterey Bay, CA. Geophysical Research Letters, 2019, 46, 12279-12288.	4.0	26
16	Sulfur metabolites in the pelagic ocean. Nature Reviews Microbiology, 2019, 17, 665-678.	28.6	104
17	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	28.6	1,138
18	Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME Journal, 2019, 13, 2536-2550.	9.8	70

#	Article	IF	CITATIONS
19	Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes. Environmental Microbiology, 2019, 21, 1687-1701.	3.8	38
20	Coastal Ocean Metagenomes and Curated Metagenome-Assembled Genomes from Marsh Landing, Sapelo Island (Georgia, USA). Microbiology Resource Announcements, 2019, 8, .	0.6	4
21	Mosaic patterns of Bâ€vitamin synthesis and utilization in a natural marine microbial community. Environmental Microbiology, 2018, 20, 2809-2823.	3.8	59
22	Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environmental Microbiology, 2018, 20, 3012-3030.	3.8	56
23	Expression patterns of elemental cycling genes in the Amazon River Plume. ISME Journal, 2017, 11, 1852-1864.	9.8	54
24	Spontaneous mutations of a model heterotrophic marine bacterium. ISME Journal, 2017, 11, 1713-1718.	9.8	22
25	Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME Journal, 2017, 11, 2677-2690.	9.8	96
26	Ocean biogeochemistry modeled with emergent trait-based genomics. Science, 2017, 358, 1149-1154.	12.6	122
27	Recognition cascade and metabolite transfer in a marine bacteriaâ€phytoplankton model system. Environmental Microbiology, 2017, 19, 3500-3513.	3.8	111
28	Microbially-Mediated Transformations of Estuarine Dissolved Organic Matter. Frontiers in Marine Science, 2017, 4, .	2.5	36
29	Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River. Frontiers in Marine Science, 2017, 4, .	2.5	14
30	Bacterial Biogeography across the Amazon River-Ocean Continuum. Frontiers in Microbiology, 2017, 8, 882.	3.5	75
31	The Ocean Microbiome: Metabolic Engine of the Marine Carbon Cycle. Microbe Magazine, 2016, 11, 262-267.	0.4	1
32	Experimental Identification of Small Non-Coding RNAs in the Model Marine Bacterium Ruegeria pomeroyi DSS-3. Frontiers in Microbiology, 2016, 7, 380.	3.5	14
33	Low genome content diversity of marine planktonic Thaumarchaeota. Environmental Microbiology Reports, 2016, 8, 501-507.	2.4	6
34	Small RNAs expressed during dimethylsulfoniopropionate degradation by a model marine bacterium. Environmental Microbiology Reports, 2016, 8, 763-773.	2.4	1
35	Deciphering ocean carbon in a changing world. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3143-3151.	7.1	253
36	Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME Journal, 2016, 10, 1589-1601.	9.8	226

#	Article	IF	CITATIONS
37	Droughtâ€induced variability in dissolved organic matter composition in a marshâ€dominated estuary. Geophysical Research Letters, 2015, 42, 6446-6453.	4.0	24
38	How do divergent ecological strategies emerge among marine bacterioplankton lineages?. Trends in Microbiology, 2015, 23, 577-584.	7.7	65
39	Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, 2015, 522, 98-101.	27.8	875
40	The global ocean microbiome. Science, 2015, 350, aac8455.	12.6	167
41	Cryptic carbon and sulfur cycling between surface ocean plankton. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 453-457.	7.1	348
42	Single-taxon field measurements of bacterial gene regulation controlling DMSP fate. ISME Journal, 2015, 9, 1677-1686.	9.8	37
43	Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. Microbiome, 2015, 3, 39.	11.1	47
44	Microbial life in Bourlyashchy, the hottest thermal pool of Uzon Caldera, Kamchatka. Extremophiles, 2015, 19, 1157-1171.	2.3	29
45	Phenotypic plasticity in heterotrophic marine microbial communities in continuous cultures. ISME Journal, 2015, 9, 1141-1151.	9.8	20
46	The transcriptional response of prokaryotes to phytoplanktonâ€derived dissolved organic matter in seawater. Environmental Microbiology, 2015, 17, 3466-3480.	3.8	55
47	Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community. Frontiers in Microbiology, 2014, 5, 185.	3.5	55
48	Evolutionary Ecology of the Marine Roseobacter Clade. Microbiology and Molecular Biology Reviews, 2014, 78, 573-587.	6.6	279
49	The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLoS Biology, 2014, 12, e1001889.	5.6	885
50	Quantitative Microbial Metatranscriptomics. Methods in Molecular Biology, 2014, 1096, 213-229.	0.9	10
51	Regulatory and Functional Diversity of Methylmercaptopropionate Coenzyme A Ligases from the Dimethylsulfoniopropionate Demethylation Pathway in Ruegeria pomeroyi DSS-3 and Other Proteobacteria. Journal of Bacteriology, 2014, 196, 1275-1285.	2.2	27
52	Comparing effective population sizes of dominant marine alphaproteobacteria lineages. Environmental Microbiology Reports, 2014, 6, 167-172.	2.4	27
53	Microbial controls on DMSP degradation and DMS formation in the Sargasso Sea. Biogeochemistry, 2014, 120, 295-305.	3.5	18
54	Microspatial gene expression patterns in the Amazon River Plume. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11085-11090.	7.1	128

#	Article	IF	CITATIONS
55	The Amazon continuum dataset: quantitative metagenomic and metatranscriptomic inventories of the Amazon River plume, June 2010. Microbiome, 2014, 2, 17.	11.1	54
56	Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters. ISME Journal, 2014, 8, 1428-1439.	9.8	55
57	Seasonal variation in the metratranscriptomes of a Thaumarchaeota population from SE USA coastal waters. ISME Journal, 2014, 8, 685-698.	9.8	58
58	Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME Journal, 2014, 8, 732-736.	9.8	98
59	An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3. Standards in Genomic Sciences, 2014, 9, 11.	1.5	20
60	Use of Internal Standards for Quantitative Metatranscriptome and Metagenome Analysis. Methods in Enzymology, 2013, 531, 237-250.	1.0	112
61	Assemblyâ€free metagenomic analysis reveals new metabolic capabilities in surface ocean bacterioplankton. Environmental Microbiology Reports, 2013, 5, 686-696.	2.4	8
62	Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME Journal, 2013, 7, 2315-2329.	9.8	172
63	Expression patterns reveal niche diversification in a marine microbial assemblage. ISME Journal, 2013, 7, 281-298.	9.8	175
64	Sizing up metatranscriptomics. ISME Journal, 2013, 7, 237-243.	9.8	298
65	Metabolism of dimethylsulphoniopropionate by <i><scp>R</scp>uegeria pomeroyi</i> â€ <scp>DSS</scp> â€3. Molecular Microbiology, 2013, 89, 774-791.	2.5	46
66	Bacterial and archaeal community structure in the surface microlayer of high mountain lakes examined under two atmospheric aerosol loading scenarios. FEMS Microbiology Ecology, 2013, 84, 387-397.	2.7	36
67	Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environmental Microbiology, 2013, 15, 1190-1203.	3.8	41
68	Evolution of Divergent Life History Strategies in Marine Alphaproteobacteria. MBio, 2013, 4, .	4.1	103
69	Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11463-11468.	7.1	328
70	Prokaryotic Super Program Advisory Committee DOE Joint Genome Institute, Walnut Creek, CA, March 27, 2013. Standards in Genomic Sciences, 2013, 8, 561-570.	1.5	5
71	Bacterial Dimethylsulfoniopropionate Degradation Genes in the Oligotrophic North Pacific Subtropical Gyre. Applied and Environmental Microbiology, 2012, 78, 2775-2782.	3.1	39
72	Genomic Insights into Bacterial DMSP Transformations. Annual Review of Marine Science, 2012, 4, 523-542.	11.6	165

#	Article	IF	CITATIONS
73	Transcriptional Changes Underlying Elemental Stoichiometry Shifts in a Marine Heterotrophic Bacterium. Frontiers in Microbiology, 2012, 3, 159.	3.5	21
74	Structures of dimethylsulfoniopropionateâ€dependent demethylase from the marine organism <i>Pelagabacter ubique</i> . Protein Science, 2012, 21, 289-298.	7.6	24
75	Omics for understanding microbial functional dynamics. Environmental Microbiology, 2012, 14, 1-3.	3.8	71
76	Genome content of uncultivated marine <i>Roseobacters</i> in the surface ocean. Environmental Microbiology, 2012, 14, 41-51.	3.8	42
77	Bacterial community transcription patterns during a marine phytoplankton bloom. Environmental Microbiology, 2012, 14, 228-239.	3.8	95
78	Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea. Environmental Microbiology, 2012, 14, 1210-1223.	3.8	54
79	Community analysis of high―and lowâ€nucleic acid ontaining bacteria in NW Mediterranean coastal waters using 16S rDNA pyrosequencing. Environmental Microbiology, 2012, 14, 1390-1402.	3.8	106
80	Metatranscriptomic signature of exogenous polyamine utilization by coastal bacterioplankton. Environmental Microbiology Reports, 2011, 3, 798-806.	2.4	47
81	Bacterial Catabolism of Dimethylsulfoniopropionate (DMSP). Frontiers in Microbiology, 2011, 2, 172.	3.5	171
82	Bromodeoxyuridine (BrdU) Labeling and Subsequent Fluorescence Activated Cell Sorting for Culture-independent Identification of Dissolved Organic Carbon-degrading Bacterioplankton. Journal of Visualized Experiments, 2011, , .	0.3	2
83	Analysis of sulfurâ€related transcription by Roseobacter communities using a taxonâ€specific functional gene microarray. Environmental Microbiology, 2011, 13, 453-467.	3.8	22
84	Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME Journal, 2011, 5, 461-472.	9.8	195
85	Metatranscriptomic analysis of ammonia-oxidizing organisms in an estuarine bacterioplankton assemblage. ISME Journal, 2011, 5, 866-878.	9.8	108
86	Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature, 2011, 473, 208-211.	27.8	126
87	Changes in Dimethylsulfoniopropionate Demethylase Gene Assemblages in Response to an Induced Phytoplankton Bloom. Applied and Environmental Microbiology, 2011, 77, 524-531.	3.1	45
88	Genome characteristics of a generalist marine bacterial lineage. ISME Journal, 2010, 4, 784-798.	9.8	358
89	Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate. ISME Journal, 2010, 4, 1410-1420.	9.8	61
90	Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environmental Microbiology, 2010, 12, 616-627.	3.8	225

#	Article	IF	CITATIONS
91	Deep Sequencing of a Dimethylsulfoniopropionate-Degrading Gene (<i>dmdA</i>) by Using PCR Primer Pairs Designed on the Basis of Marine Metagenomic Data. Applied and Environmental Microbiology, 2010, 76, 609-617.	3.1	68
92	Analyzing Gene Expression from Marine Microbial Communities using Environmental Transcriptomics. Journal of Visualized Experiments, 2009, , .	0.3	47
93	The Diverse Bacterial Community in Intertidal, Anaerobic Sediments at Sapelo Island, Georgia. Microbial Ecology, 2009, 58, 244-261.	2.8	37
94	Microbial Community Response to Seawater Amendment in Low-Salinity Tidal Sediments. Microbial Ecology, 2009, 58, 558-568.	2.8	70
95	<i>In situ</i> transcriptomic analysis of the globally important keystone N2-fixing taxon <i>Crocosphaera watsonii</i> . ISME Journal, 2009, 3, 618-631.	9.8	67
96	Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environmental Microbiology, 2009, 11, 1358-1375.	3.8	285
97	Metatranscriptomics: Eavesdropping on Complex Microbial Communities. Microbe Magazine, 2009, 4, 329-335.	0.4	86
98	Bacterial carbon processing by generalist species in the coastal ocean. Nature, 2008, 451, 708-711.	27.8	284
99	Functional metagenomic profiling of nine biomes. Nature, 2008, 452, 629-632.	27.8	842
100	Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environmental Microbiology, 2008, 10, 2397-2410.	3.8	149
101	Dimethylsulfoniopropionate-Dependent Demethylase (DmdA) from <i>Pelagibacter ubique</i> and <i>Silicibacter pomeroyi</i> . Journal of Bacteriology, 2008, 190, 8018-8024.	2.2	111
102	Occurrence and Expression of Gene Transfer Agent Genes in Marine Bacterioplankton. Applied and Environmental Microbiology, 2008, 74, 2933-2939.	3.1	88
103	Variation in Prokaryotic Community Composition as a Function of Resource Availability in Tidal Creek Sediments. Applied and Environmental Microbiology, 2008, 74, 1836-1844.	3.1	15
104	Using DNA Technology To Explore Marine Bacterial Diversity in a Coastal Georgia Salt Marsh. American Biology Teacher, 2008, 70, 279-283.	0.2	3
105	Toward a Standards-Compliant Genomic and Metagenomic Publication Record. OMICS A Journal of Integrative Biology, 2008, 12, 157-160.	2.0	33
106	Section 8 Update - Environmental transcriptomics: a method to access expressed genes in complex microbial communities. , 2008, , 1892-1904.		3
107	Section 3 update: In situ PCR methodologies for visualization of microscale genetic and taxonomic diversities of prokaryotic communities. , 2008, , 2591-2612.		0
108	Ecological Genomics of Marine Roseobacters. Applied and Environmental Microbiology, 2007, 73, 4559-4569.	3.1	327

#	Article	IF	CITATIONS
109	Genomes of Sea Microbes. Oceanography, 2007, 20, 47-55.	1.0	4
110	The role of nitrogen in chromophoric and fluorescent dissolved organic matter formation. Marine Chemistry, 2007, 103, 46-60.	2.3	62
111	Resourceful heterotrophs make the most of light in the coastal ocean. Nature Reviews Microbiology, 2007, 5, 792-800.	28.6	185
112	Comparison of chitinolytic enzymes from an alkaline, hypersaline lake and an estuary. Environmental Microbiology, 2007, 9, 197-205.	3.8	52
113	Bacterioplankton assemblages transforming dissolved organic compounds in coastal seawater. Environmental Microbiology, 2007, 9, 2025-2037.	3.8	57
114	Transcriptional response of <i>Silicibacter pomeroyi</i> DSSâ€3 to dimethylsulfoniopropionate (DMSP). Environmental Microbiology, 2007, 9, 2742-2755.	3.8	54
115	Bacterial Taxa That Limit Sulfur Flux from the Ocean. Science, 2006, 314, 649-652.	12.6	296
116	Screening for bacterial–fungal associations in a south-eastern US salt marsh using pre-established fungal monocultures. FEMS Microbiology Ecology, 2005, 54, 179-187.	2.7	5
117	Variations in the spectral properties of freshwater and estuarine CDOM caused by partitioning onto river and estuarine sediments. Estuarine, Coastal and Shelf Science, 2005, 65, 289-301.	2.1	44
118	Sources, bioavailability, and photoreactivity of dissolved organic carbon in the Sacramento–San Joaquin River Delta. Biogeochemistry, 2005, 74, 131-149.	3.5	40
119	Flow-Cytometric Cell Sorting and Subsequent Molecular Analyses for Culture-Independent Identification of Bacterioplankton Involved in Dimethylsulfoniopropionate Transformations. Applied and Environmental Microbiology, 2005, 71, 1405-1416.	3.1	33
120	Overview of the Marine Roseobacter Lineage. Applied and Environmental Microbiology, 2005, 71, 5665-5677.	3.1	753
121	Analysis of Microbial Gene Transcripts in Environmental Samples. Applied and Environmental Microbiology, 2005, 71, 4121-4126.	3.1	211
122	Dimethylsulfoniopropionate Turnover Is Linked to the Composition and Dynamics of the Bacterioplankton Assemblage during a Microcosm Phytoplankton Bloom. Applied and Environmental Microbiology, 2005, 71, 7650-7660.	3.1	69
123	Use of Microautoradiography Combined with Fluorescence In Situ Hybridization To Determine Dimethylsulfoniopropionate Incorporation by Marine Bacterioplankton Taxa. Applied and Environmental Microbiology, 2004, 70, 4648-4657.	3.1	86
124	Diverse Organization of Genes of the β-Ketoadipate Pathway in Members of the Marine Roseobacter Lineage. Applied and Environmental Microbiology, 2004, 70, 1658-1668.	3.1	52
125	Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature, 2004, 432, 910-913.	27.8	415
126	Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation–emission matrices. Marine Chemistry, 2004, 89, 15-36.	2.3	378

#	Article	IF	CITATIONS
127	Chromophoric dissolved organic matter (CDOM) source characterization in the Louisiana Bight. Marine Chemistry, 2004, 89, 257-272.	2.3	83
128	Temporal dynamics of three culturable Î ³ -Proteobacteria taxa in salt marsh sediments. Aquatic Ecology, 2003, 37, 55-64.	1.5	7
129	Diversity of Ascomycete Laccase Gene Sequences in a Southeastern US Salt Marsh. Microbial Ecology, 2003, 45, 270-281.	2.8	79
130	Linking a Bacterial Taxon to Sulfur Cycling in the Sea: Studies of the Marine Roseobacter Group. Geomicrobiology Journal, 2003, 20, 375-388.	2.0	133
131	Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1261-1269.	1.7	231
132	Dynamics of Bacterial and Fungal Communities on Decaying Salt Marsh Grass. Applied and Environmental Microbiology, 2003, 69, 6676-6687.	3.1	105
133	Oxidation of organic and inorganic sulfur compounds by aerobic heterotrophic marine bacteria. Progress in Industrial Microbiology, 2002, 36, 291-310.	0.0	2
134	Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts. Limnology and Oceanography, 2002, 47, 343-352.	3.1	136
135	Analysis of Internal Transcribed Spacer (ITS) Regions of rRNA Genes in Fungal Communities in a Southeastern U.S. Salt Marsh. Microbial Ecology, 2002, 43, 329-340.	2.8	114
136	Diversity of the Ring-Cleaving Dioxygenase Gene pcaH in a Salt Marsh Bacterial Community. Applied and Environmental Microbiology, 2001, 67, 5801-5809.	3.1	58
137	Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment. FEMS Microbiology Ecology, 2000, 34, 103-111.	2.7	35
138	Carbon loss and optical property changes during longâ€ŧerm photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography, 2000, 45, 1254-1264.	3.1	624
139	Key Aromatic-Ring-Cleaving Enzyme, Protocatechuate 3,4-Dioxygenase, in the Ecologically Important Marine Roseobacter Lineage. Applied and Environmental Microbiology, 2000, 66, 4662-4672.	3.1	132
140	Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom. Applied and Environmental Microbiology, 2000, 66, 4237-4246.	3.1	402
141	Dimethylsulfoniopropionate and Methanethiol Are Important Precursors of Methionine and Protein-Sulfur in Marine Bacterioplankton. Applied and Environmental Microbiology, 1999, 65, 4549-4558.	3.1	229
142	Biodegradation of Riverine Dissolved Organic Carbon in Five Estuaries of the Southeastern United States. Estuaries and Coasts, 1999, 22, 55.	1.7	162
143	Oxygen and carbon dioxide mass balance for the estuarineâ€intertidal marsh complex of five rivers in the southeastern U.S Limnology and Oceanography, 1999, 44, 639-649.	3.1	139
144	Transformation of Sulfur Compounds by an Abundant Lineage of Marine Bacteria in the α-Subclass of the Class <i>Proteobacteria</i> . Applied and Environmental Microbiology, 1999, 65, 3810-3819.	3.1	327

#	Article	IF	CITATIONS
145	Bacterial populations in replicate marine enrichment cultures: assessing variability in abundance using 16S rRNA-based probes. , 1999, , 69-75.		3
146	Title is missing!. Biogeochemistry, 1998, 43, 211-234.	3.5	174
147	Sagittula stellata gen. nov., sp. nov., a Lignin-Transforming Bacterium from a Coastal Environment. International Journal of Systematic Bacteriology, 1997, 47, 773-780.	2.8	150
148	Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnology and Oceanography, 1997, 42, 1307-1316.	3.1	733
149	Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnology and Oceanography, 1997, 42, 1317-1324.	3.1	282
150	Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Applied and Environmental Microbiology, 1997, 63, 4237-4242.	3.1	347
151	In situ reverse transcription, an approach to characterize genetic diversity and activities of prokaryotes. Applied and Environmental Microbiology, 1997, 63, 4907-4913.	3.1	47
152	Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature, 1996, 381, 404-407.	27.8	387
153	Impact of a genetically engineered bacterium with enhanced alkaline phosphatase activity on marine phytoplankton communities. Applied and Environmental Microbiology, 1996, 62, 6-12.	3.1	33
154	Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Applied and Environmental Microbiology, 1996, 62, 4433-4440.	3.1	89
155	Productivities of microbial decomposers during early stages of decomposition of leaves of a freshwater Biology, 1995, 34, 135-148.	2.4	86
156	Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Applied and Environmental Microbiology, 1995, 61, 3695-3700.	3.1	98
157	In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Applied and Environmental Microbiology, 1995, 61, 4074-4082.	3.1	178
158	Preface. Microbial Ecology, 1994, 28, 111-112.	2.8	0
159	Dissolved humic substances of vascular plant origin in a coastal marine environment. Limnology and Oceanography, 1994, 39, 762-771.	3.1	103
160	Direct extraction and purification of rRNA for ecological studies. Applied and Environmental Microbiology, 1993, 59, 915-918.	3.1	119
161	Decomposition of lignocellulose from a freshwater macrophyte by aero-aquatic fungi. Microbial Ecology, 1992, 23, 159-167.	2.8	12
162	Contributions of three subsystems of a freshwater marsh to total bacterial secondary productivity. Microbial Ecology, 1992, 24, 161-70.	2.8	18

#	Article	IF	CITATIONS
163	Adaptation of model genetically engineered microorganisms to lake water: growth rate enhancements and plasmid loss. Applied and Environmental Microbiology, 1992, 58, 3630-3637.	3.1	33
164	Distribution of terrestrially derived dissolved organic matter on the southeastern U.S. continental shelf. Limnology and Oceanography, 1991, 36, 1134-1149.	3.1	120
165	Carbohydrate Signatures of Aquatic Macrophytes and Their Dissolved Degradation Products as Determined by a Sensitive High-Performance Ion Chromatography Method. Applied and Environmental Microbiology, 1991, 57, 3135-3143.	3.1	60
166	Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnology and Oceanography, 1990, 35, 1744-1756.	3.1	238
167	Formation and bacterial utilization of dissolved organic carbon derived from detrital lignocellulose. Limnology and Oceanography, 1989, 34, 1034-1047.	3.1	83
168	Kinetics of microbial degradation of vascular plant material in two wetland ecosystems. Oecologia, 1989, 79, 158-167.	2.0	38
169	Bacterial secondary production on vascular plant detritus: relationships to detritus composition and degradation rate. Applied and Environmental Microbiology, 1989, 55, 2178-2189.	3.1	73
170	Horizontal Gene Transfer Among Bacteria in Aquatic Systems: Effects of Nutrient Concentrations. , 1989, , 131-138.		0
171	Carbon Flow From Lignocellulose: A Simulation Analysis of a Detritus-Based Ecosystem. Ecology, 1988, 69, 1525-1536.	3.2	32
172	Dynamics of microbial biomass and activity in five habitats of the Okefenokee Swamp ecosystem. Microbial Ecology, 1987, 14, 203-217.	2.8	7
173	Modeling the Persistence of Lignocellulosic Detritus in Wetland Ecosystems. , 1987, , 357-374.		0
174	Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: Relative contributions of procaryotes and eucaryotes1. Limnology and Oceanography, 1986, 31, 89-100.	3.1	173
175	The Hudson River Ecosystem. Springer Series on Environmental Management, 1986, , 6-39.	0.3	3
176	Effects of pH and plant source on lignocellulose biodegradation rates in two wetland ecosystems, the Okefenokee Swamp and a Georgia salt marsh1,2,3. Limnology and Oceanography, 1985, 30, 489-499.	3.1	94
177	Influence of adjacent land use on understory vegetation of New York forests. Urban Ecology, 1984, 8, 329-340.	0.1	51
178	On Estimators Obtained From a Sample Augmented by Multiple Regression. Water Resources Research, 1974, 10, 81-85.	4.2	18
179	A saltmarsh decomposition system and its ascomycetous laccase genes. , 0, , 371-378.		0