Wolfgang Kreyling

List of Publications by Citations

Source: https://exaly.com/author-pdf/2731235/wolfgang-kreyling-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

69 20,357 142 194 h-index g-index citations papers 208 6.34 22,077 5.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
194	Translocation of inhaled ultrafine particles to the brain. <i>Inhalation Toxicology</i> , 2004 , 16, 437-45	2.7	1744
193	Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. <i>Particle and Fibre Toxicology</i> , 2005 , 2, 8	8.4	1418
192	Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. <i>Environmental Health Perspectives</i> , 2005 , 113, 1555-60	8.4	994
191	The potential risks of nanomaterials: a review carried out for ECETOC. <i>Particle and Fibre Toxicology</i> , 2006 , 3, 11	8.4	870
190	Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2002 , 65, 1531-	.4 ³ 3 ²	741
189	Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2002 , 65, 1513-30	3.2	693
188	Deposition and biokinetics of inhaled nanoparticles. <i>Particle and Fibre Toxicology</i> , 2010 , 7, 2	8.4	448
187	Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2011 , 77, 407-16	5.7	424
186	Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. <i>Biomaterials</i> , 2010 , 31, 6574-81	15.6	411
185	Biodistribution of 1.4- and 18-nm gold particles in rats. Small, 2008, 4, 2108-11	11	408
184	Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) study. <i>Circulation</i> , 2002 , 106, 933-8	16.7	321
183	Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. <i>Inhalation Toxicology</i> , 2004 , 16, 453-9	2.7	314
182	Health effects of particles in ambient air. <i>International Journal of Hygiene and Environmental Health</i> , 2004 , 207, 399-407	6.9	313
181	Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. <i>Particle and Fibre Toxicology</i> , 2010 , 7, 3	8.4	310
180	Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. <i>Inhalation Toxicology</i> , 2009 , 21 Suppl 1, 55-60	0 ^{2.7}	295
179	Toxicological hazards of inhaled nanoparticlespotential implications for drug delivery. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 521-31	1.3	272
178	Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. <i>Nanotoxicology</i> , 2012 , 6, 36-46	5.3	270

(2004-2015)

177	In vivo integrity of polymer-coated gold nanoparticles. <i>Nature Nanotechnology</i> , 2015 , 10, 619-23	28.7	269
176	Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2008 , 177, 426-32	10.2	258
175	Ultrafine particle-lung interactions: does size matter?. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 2006 , 19, 74-83		253
174	Epidemiological evidence on health effects of ultrafine particles. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 2002 , 15, 189-201		249
173	Health implications of nanoparticles. <i>Journal of Nanoparticle Research</i> , 2006 , 8, 543-562	2.3	222
172	In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung dialog between aerosol science and biology. <i>Journal of Aerosol Science</i> , 2011 , 42, 668-692	4.3	215
171	Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. <i>Environmental Health Perspectives</i> , 2007 , 115, 728-33	8.4	212
170	Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. <i>Environmental Health Perspectives</i> , 2017 , 125, 106002	8.4	210
169	Increased asthma medication use in association with ambient fine and ultrafine particles. <i>European Respiratory Journal</i> , 2002 , 20, 691-702	13.6	210
168	A complementary definition of nanomaterial. <i>Nano Today</i> , 2010 , 5, 165-168	17.9	197
168 167	A complementary definition of nanomaterial. <i>Nano Today</i> , 2010 , 5, 165-168 The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2008 , 38, 371-6	17.9 5·7	197 177
	The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. <i>American</i>	, ,	
167	The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2008 , 38, 371-6 Daily mortality and particulate matter in different size classes in Erfurt, Germany. <i>Journal of</i>	5.7	177
167 166	The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2008 , 38, 371-6 Daily mortality and particulate matter in different size classes in Erfurt, Germany. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2007 , 17, 458-67 Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on	5·7 6. ₇	177
167 166 165	The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2008 , 38, 371-6 Daily mortality and particulate matter in different size classes in Erfurt, Germany. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2007 , 17, 458-67 Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. <i>ACS Nano</i> , 2014 , 8, 222-33 Concentrations of ultrafine, fine and PM2.5 particles in three European cities. <i>Atmospheric</i>	5·7 6.7 16.7	177 170 167
167166165164	The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2008 , 38, 371-6 Daily mortality and particulate matter in different size classes in Erfurt, Germany. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2007 , 17, 458-67 Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. <i>ACS Nano</i> , 2014 , 8, 222-33 Concentrations of ultrafine, fine and PM2.5 particles in three European cities. <i>Atmospheric Environment</i> , 2001 , 35, 3729-3738 Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study. <i>Journal of Exposure Science and</i>	5.7 6.7 16.7	177 170 167 160
167166165164163	The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2008 , 38, 371-6 Daily mortality and particulate matter in different size classes in Erfurt, Germany. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2007 , 17, 458-67 Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. <i>ACS Nano</i> , 2014 , 8, 222-33 Concentrations of ultrafine, fine and PM2.5 particles in three European cities. <i>Atmospheric Environment</i> , 2001 , 35, 3729-3738 Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2006 , 16, 332-41 Distribution pattern of inhaled ultrafine gold particles in the rat lung. <i>Inhalation Toxicology</i> , 2006 ,	5.7 6.7 16.7 5.3	177 170 167 160

159	Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. European Journal of Pharmaceutics and Biopharmaceutics, 2011 , 77, 438-49	5.7	146
158	Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. <i>Toxicology and Applied Pharmacology</i> , 2010 , 242, 66-78	4.6	142
157	Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. <i>Environmental Health Perspectives</i> , 2004 , 112, 369-77	8.4	138
156	Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. <i>Particle and Fibre Toxicology</i> , 2009 , 6, 19	8.4	130
155	Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. <i>Nanotoxicology</i> , 2011 , 5, 1-11	5.3	126
154	Sources and elemental composition of ambient PM(2.5) in three European cities. <i>Science of the Total Environment</i> , 2005 , 337, 147-62	10.2	124
153	Effects of silver nanoparticles on the liver and hepatocytes in vitro. <i>Toxicological Sciences</i> , 2013 , 131, 537-47	4.4	120
152	Dosimetry and toxicology of inhaled ultrafine particles. <i>Biomarkers</i> , 2009 , 14 Suppl 1, 67-73	2.6	118
151	Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. <i>Critical Reviews in Toxicology</i> , 2013 , 43, 1-20	5.7	116
150	Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. <i>Science of the Total Environment</i> , 2003 , 305, 143-56	10.2	115
149	Concentration response functions for ultrafine particles and all-cause mortality and hospital admissions: results of a European expert panel elicitation. <i>Environmental Science & European expert panel elicitation</i> . <i>Environmental Euro</i>	10.3	112
148	Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. <i>Chemistry Central Journal</i> , 2009 , 3, 16		111
147	Negligible clearance of ultrafine particles retained in healthy and affected human lungs. <i>European Respiratory Journal</i> , 2006 , 28, 286-90	13.6	107
146	Dose-controlled exposure of A549 epithelial cells at the air-liquid interface to airborne ultrafine carbonaceous particles. <i>Chemosphere</i> , 2006 , 65, 1784-90	8.4	107
145	Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. <i>Circulation</i> , 2004 , 109, 1320-5	16.7	105
144	The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. <i>Biomaterials</i> , 2013 , 34, 5439-52	15.6	104
143	PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 1944-6	5 3	102
142	Multifunctional nanoparticles for dual imaging. <i>Analytical Chemistry</i> , 2011 , 83, 2877-82	7.8	99

(2004-2006)

141	No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. <i>Inhalation Toxicology</i> , 2006 , 18, 741-7	2.7	99	
140	The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2010 , 65, 850-8	9.3	96	
139	A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human HealthENPRA ProjectThe Highlights, Limitations, and Current and Future Challenges. <i>Journal of Toxicology and Environmental Health - Part B: Critical Reviews</i> , 2016 , 19, 1-28	8.6	96	
138	Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: the ULTRA study. <i>American Journal of Epidemiology</i> , 2003 , 157, 613-23	3.8	93	
137	Blood protein coating of gold nanoparticles as potential tool for organ targeting. <i>Biomaterials</i> , 2014 , 35, 3455-66	15.6	90	
136	Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. <i>Nanotechnology</i> , 2013 , 24, 265103	3.4	85	
135	Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. <i>Particle and Fibre Toxicology</i> , 2014 , 11, 33	8.4	84	
134	Particle toxicology and health - where are we?. Particle and Fibre Toxicology, 2019, 16, 19	8.4	83	
133	Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. <i>Nanotoxicology</i> , 2017 , 11, 443-453	5.3	81	
132	An interspecies comparison of the lung clearance of inhaled monodisperse cobalt oxide particles Part I: Objectives and summary of results. <i>Journal of Aerosol Science</i> , 1989 , 20, 169-188	4.3	81	
131	Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 2014 , 27, 229-54	3.8	78	
130	Protein corona: implications for nanoparticle interactions with pulmonary cells. <i>Particle and Fibre Toxicology</i> , 2017 , 14, 42	8.4	75	
129	Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 2675-2687	2.3	74	
128	Silver nanoparticles inhaled during pregnancy reach and affect the placenta and the foetus. <i>Nanotoxicology</i> , 2017 , 11, 687-698	5.3	70	
127	Comparison of two particle-size spectrometers for ambient aerosol measurements. <i>Atmospheric Environment</i> , 2000 , 34, 139-149	5.3	68	
126	Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. <i>Science of the Total Environment</i> , 2008 , 398, 133-44	10.2	64	
125	Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. <i>Archives of Toxicology</i> , 2011 , 85, 751-73	5.8	60	
124	Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. <i>Microscopy Research and Technique</i> , 2004 , 63, 298-305	2.8	60	

123	Short-term mortality rates during a decade of improved air quality in Erfurt, Germany. <i>Environmental Health Perspectives</i> , 2009 , 117, 448-54	8.4	59
122	Diverging long-term trends in ambient urban particle mass and number concentrations associated with emission changes caused by the German unification. <i>Atmospheric Environment</i> , 2003 , 37, 3841-384	8 ^{5.3}	59
121	Inhalation of salt aerosol particles Estimation of the temperature and relative humidity of the air in the human upper airways. <i>Journal of Aerosol Science</i> , 1988 , 19, 343-363	4.3	59
120	Toxic effects and biodistribution of ultrasmall gold nanoparticles. <i>Archives of Toxicology</i> , 2017 , 91, 3011	- <u>3</u> . ® 37	58
119	Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: Part 1. <i>Nanotoxicology</i> , 2017 , 11, 434-442	5.3	57
118	Colloidal Stability and Surface Chemistry Are Key Factors for the Composition of the Protein Corona of Inorganic Gold Nanoparticles. <i>Advanced Functional Materials</i> , 2017 , 27, 1701956	15.6	53
117	Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: Part 3. <i>Nanotoxicology</i> , 2017 , 11, 454-464	5.3	52
116	Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. <i>Particle and Fibre Toxicology</i> , 2013 , 10, 19	8.4	52
115	Nanoparticle delivery in infant lungs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 5092-7	11.5	51
114	Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium. <i>Particle and Fibre Toxicology</i> , 2005 , 2, 7	8.4	50
113	Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung. <i>Inhalation Toxicology</i> , 2004 , 16 Suppl 1, 83-92	2.7	48
112	The influence of hydrogen peroxide and histamine on lung permeability and translocation of iridium nanoparticles in the isolated perfused rat lung. <i>Particle and Fibre Toxicology</i> , 2005 , 2, 3	8.4	47
111	In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 1699-711	3	46
110	Cytotoxic and proinflammatory effects of PVP-coated silver nanoparticles after intratracheal instillation in rats. <i>Beilstein Journal of Nanotechnology</i> , 2013 , 4, 933-40	3	45
109	The influence of pulmonary surfactant on nanoparticulate drug delivery systems. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2011 , 77, 350-2	5.7	45
108	Relationship between different size classes of particulate matter and meteorology in three European cities. <i>Journal of Environmental Monitoring</i> , 2005 , 7, 302-10		44
107	Change of the ambient particle size distribution in East Germany between 1993 and 1999. Atmospheric Environment, 2001 , 35, 4357-4366	5.3	43
106	Long-term measurements of size-segregated ambient aerosol in two German cities located 100 km apart. <i>Atmospheric Environment</i> , 2003 , 37, 4687-4700	5.3	42

105	Inter-laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation. <i>NanoImpact</i> , 2018 , 10, 97-107	5.6	41	
104	Metrics, dose, and dose concept: the need for a proper dose concept in the risk assessment of nanoparticles. <i>International Journal of Environmental Research and Public Health</i> , 2014 , 11, 4026-48	4.6	41	
103	Daily variation in fine and ultrafine particulate air pollution and urinary concentrations of lung Clara cell protein CC16. <i>Occupational and Environmental Medicine</i> , 2004 , 61, 908-14	2.1	41	
102	Topical drug delivery in chronic rhinosinusitis patients before and after sinus surgery using pulsating aerosols. <i>PLoS ONE</i> , 2013 , 8, e74991	3.7	39	
101	Interspecies comparison of lung clearance after inhalation of monodisperse, solid cobalt oxide aerosol particles. <i>Journal of Aerosol Science</i> , 1991 , 22, 509-535	4.3	39	
100	PM25 measurements in ambient aerosol: comparison between Harvard impactor (HI) and the tapered element oscillating microbalance (TEOM) system. <i>Science of the Total Environment</i> , 2001 , 278, 191-7	10.2	37	
99	Age-Dependent Rat Lung Deposition Patterns of Inhaled 20 Nanometer Gold Nanoparticles and their Quantitative Biokinetics in Adult Rats. <i>ACS Nano</i> , 2018 , 12, 7771-7790	16.7	34	
98	Pulmonary surfactant is indispensable in order to simulate the in vivo situation. <i>Particle and Fibre Toxicology</i> , 2013 , 10, 6	8.4	34	
97	Radiolabelling of TiO2 nanoparticles for radiotracer studies. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 2435-2443	2.3	34	
96	Biodistribution of inhaled gold nanoparticles in mice and the influence of surfactant protein D. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 2013 , 26, 24-30	3.8	32	
95	Binding of polystyrene and carbon black nanoparticles to blood serum proteins. <i>Inhalation Toxicology</i> , 2011 , 23, 468-75	2.7	32	
94	Interspecies Comparison of Phagolysosomal pH in Alveolar Macrophages. <i>Inhalation Toxicology</i> , 1991 , 3, 91-100	2.7	30	
93	Surface modification and size dependence in particle translocation during early embryonic development. <i>Inhalation Toxicology</i> , 2009 , 21 Suppl 1, 92-6	2.7	29	
92	Cardiovascular and inflammatory effects of intratracheally instilled ambient dust from Augsburg, Germany, in spontaneously hypertensive rats (SHRs). <i>Particle and Fibre Toxicology</i> , 2010 , 7, 27	8.4	29	
91	Total and regional deposition of ultrafine particles in a mouse model of allergic inflammation of the lung. <i>Inhalation Toxicology</i> , 2008 , 20, 585-93	2.7	29	
90	Postnatal lung function in the developing rat. <i>Journal of Applied Physiology</i> , 2008 , 104, 1167-76	3.7	29	
89	Discovery of unique and ENM- specific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats. <i>Toxicology and Applied Pharmacology</i> , 2016 , 299, 41-6	4.6	29	
88	Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice. <i>Particle and Fibre Toxicology</i> , 2017 , 14, 19	8.4	28	

87	Efficient internalization and intracellular translocation of inhaled gold nanoparticles in rat alveolar macrophages. <i>Nanomedicine</i> , 2012 , 7, 855-65	5.6	27
86	Occupational and consumer risk estimates for nanoparticles emitted by laser printers. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 91-99	2.3	27
85	Comparability of three spectrometers for monitoring urban aerosol. <i>Atmospheric Environment</i> , 2001 , 35, 2045-2051	5.3	27
84	Comparison of experimental and calculated data for the total and regional deposition in the human lung. <i>Journal of Aerosol Science</i> , 1985 , 16, 133-143	4.3	27
83	Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. <i>Particle and Fibre Toxicology</i> , 2014 , 11, 19	8.4	26
82	Left-to-right asymmetry of aerosol deposition after shallow bolus inhalation depends on lung ventilation. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 2009 , 22, 333-9	3.8	25
81	Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 511-524	2.3	23
80	Soluble iron modulates iron oxide particle-induced inflammatory responses via prostaglandin E(2)synthesis: In vitro and in vivo studies. <i>Particle and Fibre Toxicology</i> , 2009 , 6, 34	8.4	23
79	A generator for the production of radiolabelled ultrafine carbonaceous particles for deposition and clearance studies in the respiratory tract. <i>Journal of Aerosol Science</i> , 2006 , 37, 631-644	4.3	22
78	TOF-SIMS characterisation of spark-generated nanoparticles made from pairs of IrIt and IrIt electrodes. <i>International Journal of Mass Spectrometry</i> , 2006 , 254, 70-84	1.9	22
77	Particle Transport from the Lower Respiratory Tract. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 1988 , 1, 351-370		22
76	Aerosol particle parameters maintaining lung clearance by intracellular dissolution and translocation. <i>Journal of Aerosol Science</i> , 1990 , 21, 371-374	4.3	19
75	Biokinetic studies of non-complexed siRNA versus nano-sized PEI F25-LMW/siRNA polyplexes following intratracheal instillation into mice. <i>International Journal of Pharmaceutics</i> , 2016 , 500, 227-35	6.5	18
74	Macrophage functions measured by magnetic microparticles in vivo and in vitro. <i>Journal of Magnetism and Magnetic Materials</i> , 2001 , 225, 218-225	2.8	18
73	Conditions for measuring supersaturation in the human lung using aerosols. <i>Journal of Aerosol Science</i> , 1984 , 15, 211-215	4.3	18
72	Numerical and experimental study on the deposition of nanoparticles in an extrathoracic oral airway model. <i>Journal of Aerosol Science</i> , 2013 , 57, 131-143	4.3	17
71	Corrections in dose assessment of 99mTc radiolabeled aerosol particles targeted to central human airways using planar gamma camera imaging. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 2009 , 22, 45-54	3.8	17
70	Early Response of the Canine Respiratory Tract Following Long-Term Exposure to a Sulfur(IV) Aerosol at Low Concentration. V. Morphology and Morphometry. <i>Inhalation Toxicology</i> , 1992 , 4, 247-27	2 ^{2.7}	17

(2013-2008)

69	A novel assay for the quantification of internalized nanoparticles in macrophages. <i>Nanotoxicology</i> , 2008 , 2, 232-242	5.3	16
68	Lung clearance in Long-Evans rats after inhalation of porous, monodisperse cobalt oxide particles. <i>Experimental Lung Research</i> , 1993 , 19, 445-67	2.3	16
67	Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 2440-9	3	15
66	Phagolysosomal morphology and dissolution of cobalt oxide particles by human and rabbit alveolar macrophages. <i>Experimental Lung Research</i> , 1995 , 21, 51-66	2.3	15
65	Design, operation and performance of whole body chambers for long-term aerosol exposure of large experimental animals. <i>Journal of Aerosol Science</i> , 1992 , 23, 279-290	4.3	15
64	Early Response of the Canine Respiratory Tract Following Long-Term Exposure to a Sulfur(IV) Aerosol at low Concentration. III. Macrophage-Mediated Long-Term Particle Clearance. <i>Inhalation Toxicology</i> , 1992 , 4, 197-233	2.7	14
63	To the editors: express concern about the recent paper by Song et al. <i>European Respiratory Journal</i> , 2010 , 35, 226-7	13.6	13
62	Aerosol delivery during mechanical ventilation to the rat. <i>Experimental Lung Research</i> , 2004 , 30, 635-51	2.3	13
61	An interspecies comparison of the lung clearance of inhaled monodisperse cobalt oxide particles Part IV: Lung clearance of inhaled cobalt oxide particles in Beagle dogs. <i>Journal of Aerosol Science</i> , 1989 , 20, 219-232	4.3	13
60	Pulmonary DWCNT exposure causes sustained local and low-level systemic inflammatory changes in mice. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2013 , 84, 412-20	5.7	12
59	The procoagulant effects of fine particulate matter in vivo. <i>Particle and Fibre Toxicology</i> , 2011 , 8, 12; author reply 12	8.4	12
58	Application of an informatics-based decision-making framework and process to the assessment of radiation safety in nanotechnology. <i>Health Physics</i> , 2015 , 108, 179-94	2.3	11
57	Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm titanium dioxide nanoparticle aerosols in healthy adult rats after a single two-hour inhalation exposure. <i>Particle and Fibre Toxicology</i> , 2019 , 16, 29	8.4	11
56	Intercomparison of Aerosol Spectrometers for Ambient Air Monitoring. <i>Aerosol Science and Technology</i> , 2002 , 36, 866-876	3.4	11
55	Aerosol particle growth in the human airways using a calculated humidity profile. <i>Journal of Aerosol Science</i> , 1983 , 14, 196-199	4.3	11
54	The influence of improved air quality on mortality risks in Erfurt, Germany. <i>Research Report (health Effects Institute)</i> , 2009 , 5-77; discussion 79-90	0.9	11
53	Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1 -hour inhalation exposure. <i>Particle and Fibre Toxicology</i> , 2020 , 17, 21	8.4	10
52	Gold nanoparticle aerosols for rodent inhalation and translocation studies. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	10

51	Interspecies Comparison of the Clearance of Ionic Cobalt from the Lungs. <i>Inhalation Toxicology</i> , 1994 , 6, 225-240	2.7	10
50	Production of 111In-labelled monodisperse aerosol particles. <i>Journal of Aerosol Science</i> , 1989 , 20, 1289	-14292	8
49	Analysis of intraphagolysosomal dissolution of test particles in canine alveolar macrophages. <i>Journal of Aerosol Science</i> , 1988 , 19, 1071-1074	4.3	8
48	Macrophage Cellular Adaptation, Localization and Imaging of Different Size Polystyrene Particles. <i>Nano Biomedicine and Engineering</i> , 2009 , 1,	2.9	8
47	Intracellular particle dissolution in macrophages isolated from the lung of the Fischer (F-344) rat. <i>Experimental Lung Research</i> , 1994 , 20, 143-56	2.3	7
46	Long-term exposure of dogs to a sulphite aerosol: I. Rationale and design parameters. <i>Journal of Aerosol Science</i> , 1990 , 21, S471-S474	4.3	7
45	Advances in lung imaging techniques for the treatment of respiratory disease. <i>Drug Discovery Today: Therapeutic Strategies</i> , 2008 , 5, 87-92		6
44	Improved ventricular function during inhalation of PGI(2) aerosol partly relies on enhanced myocardial contractility. <i>European Surgical Research</i> , 2005 , 37, 9-17	1.1	6
43	Long-term exposure of dogs to a sulphite aerosol: III. Effect of lung clearance. <i>Journal of Aerosol Science</i> , 1990 , 21, S479-S482	4.3	6
42	Estimation of the deposition of polydisperse hygroscopic aerosol particles in the respiratory tract. <i>Journal of Aerosol Science</i> , 1991 , 22, S863-S866	4.3	6
41	Facilities for chronic exposure of dogs to sulfite aerosols. <i>Journal of Aerosol Science</i> , 1988 , 19, 971-973	4.3	6
40	A scintillation counter for measuring removal of radioactive particles from dog lungs. <i>Journal of Aerosol Science</i> , 1989 , 20, 1297-1300	4.3	5
39	Continuous dispersion of aqueous solutions by a modified vibrating orifice aerosol generator. Journal of Aerosol Science, 1985 , 16, 261-263	4.3	5
38	Unpredictable Nanoparticle Retention in Commonly Used Plastic Syringes Introduces Dosage Uncertainties That May Compromise the Accuracy of Nanomedicine and Nanotoxicology Studies. <i>Frontiers in Pharmacology</i> , 2019 , 10, 1293	5.6	5
37	Long-term responses of canine lungs to acidic particles. <i>Inhalation Toxicology</i> , 2009 , 21, 920-32	2.7	4
36	Multimodal imaging for the detection of sub-micron particles in the gas-exchange region of the mammalian lung. <i>Journal of Physics: Conference Series</i> , 2009 , 186, 012040	0.3	4
35	Deep pulmonary lymphatics in immature lungs. <i>Journal of Applied Physiology</i> , 2009 , 107, 859-63	3.7	4
34	Motion and twisting of magnetic particles ingested by alveolar macrophages in the human lung: effect of smoking and disease. <i>Biomagnetic Research and Technology</i> , 2006 , 4, 4		4

33	Properties of a sodiumbisulfite aerosol. <i>Journal of Aerosol Science</i> , 1989 , 20, 1277-1280	4.3	4
32	Interspecies comparison of lung clearance after inhalation of monodisperse, solid cobalt oxide aerosol particles. <i>Journal of Aerosol Science</i> , 1989 , 20, 1317-1320	4.3	4
31	Particle transport from the lower respiratory tract. <i>Journal of Aerosol Science</i> , 1987 , 18, 749-752	4.3	4
30	In Vivo Evaluation of Chemical Biopersistence of Nonfibrous Inorganic Particles. <i>Environmental Health Perspectives</i> , 1994 , 102, 119	8.4	3
29	Measurement on mucociliary clearance in the upper airwaysof beagle dogs. <i>Journal of Aerosol Science</i> , 1991 , 22, S867-S870	4.3	3
28	Ultrafine Particles: Geiser et al. Respond. <i>Environmental Health Perspectives</i> , 2006 , 114, A212-A213	8.4	3
27	Dosimetry and Toxicology of Nanosized Particles and Fibres. <i>Handbook of Environmental Chemistry</i> , 2015 , 1-18	0.8	2
26	High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue 2011 ,		2
25	Dosimetry of Inhaled Nanoparticles 2010 , 145-171		2
24	Translocation and accumulation of nanoparticles in secondary target organs after uptake by various routes of intake. <i>Toxicology Letters</i> , 2006 , 164, S34	4.4	2
	Tarrods roaces of intenter rosincology Leccers, Lood, to 1, 55 1		
23	PARTICULATE MATTER IN SEVERAL SIZE CLASSES AND DAILY MORTALITY IN ERFURT, GERMANY. <i>Epidemiology</i> , 2004 , 15, S59	3.1	2
23	PARTICULATE MATTER IN SEVERAL SIZE CLASSES AND DAILY MORTALITY IN ERFURT, GERMANY.		2
	PARTICULATE MATTER IN SEVERAL SIZE CLASSES AND DAILY MORTALITY IN ERFURT, GERMANY. Epidemiology, 2004, 15, S59 An Interspecies Comparison of the Translocation of Material from Lung to Blood. Annals of		
22	PARTICULATE MATTER IN SEVERAL SIZE CLASSES AND DAILY MORTALITY IN ERFURT, GERMANY. Epidemiology, 2004, 15, S59 An Interspecies Comparison of the Translocation of Material from Lung to Blood. Annals of Occupational Hygiene, 1988, An aerosol nebulizer for low concentrated particle suspensions. Journal of Aerosol Science, 1983,	3.1	2
22	PARTICULATE MATTER IN SEVERAL SIZE CLASSES AND DAILY MORTALITY IN ERFURT, GERMANY. Epidemiology, 2004, 15, S59 An Interspecies Comparison of the Translocation of Material from Lung to Blood. Annals of Occupational Hygiene, 1988, An aerosol nebulizer for low concentrated particle suspensions. Journal of Aerosol Science, 1983, 14, 264-267	3.1	2
22 21 20	PARTICULATE MATTER IN SEVERAL SIZE CLASSES AND DAILY MORTALITY IN ERFURT, GERMANY. Epidemiology, 2004, 15, S59 An Interspecies Comparison of the Translocation of Material from Lung to Blood. Annals of Occupational Hygiene, 1988, An aerosol nebulizer for low concentrated particle suspensions. Journal of Aerosol Science, 1983, 14, 264-267 Translocation of Inhaled Nanoparticles 2011, 125-143 Estimation of health risks and safety margins due to inhalation of ultrafine particles and nanoparticles in selected occupational, consumer and environmental settings. Journal of Physics:	3.1	2 2
22 21 20 19	PARTICULATE MATTER IN SEVERAL SIZE CLASSES AND DAILY MORTALITY IN ERFURT, GERMANY. Epidemiology, 2004, 15, S59 An Interspecies Comparison of the Translocation of Material from Lung to Blood. Annals of Occupational Hygiene, 1988, An aerosol nebulizer for low concentrated particle suspensions. Journal of Aerosol Science, 1983, 14, 264-267 Translocation of Inhaled Nanoparticles 2011, 125-143 Estimation of health risks and safety margins due to inhalation of ultrafine particles and nanoparticles in selected occupational, consumer and environmental settings. Journal of Physics: Conference Series, 2009, 170, 012031 Cell shape imaging analysis: A fast and reliable technique for the investigation of internalised	3.1 4·3	2 2 1

15	Production of monodisperse, fluorescently and radioactively labelled aerosol particles. <i>Journal of Aerosol Science</i> , 1992 , 23, 181-184	4.3	1
14	36 P 03 A miniature jet nebulizer for aerosol bolus delivery to respiratory airways via bronchoscopy. <i>Journal of Aerosol Science</i> , 1993 , 24, S451-S452	4.3	1
13	Intercomparison of particle size spectrometers. <i>Journal of Aerosol Science</i> , 1989 , 20, 1481-1484	4.3	1
12	Determination of the retention of test aerosols inhaled by beagle dogs. <i>Journal of Aerosol Science</i> , 1979 , 10, 220-221	4.3	1
11	Some physical properties of cobalt oxide aerosol used for lung retention studies. <i>Journal of Aerosol Science</i> , 1980 , 11, 248	4.3	1
10	Toxicokinetics of Inhaled Nanoparticles32-36		1
9	The Wetness of ambient aerosol and its influence on sizing and collection. <i>Journal of Aerosol Science</i> , 1998 , 29, S963-S964	4.3	
8	31.O.03 Responses of the canine lungs during long-term exposure to a neutral sulfite and an acidic sulfate aerosol at low concentrations. <i>Journal of Aerosol Science</i> , 1994 , 25, 551	4.3	
7	Retained particle burden in the lungs of monkeys after chronic quartz dust exposure. <i>Journal of Aerosol Science</i> , 1992 , 23, 507-510	4.3	
6	Sulfite oxidase activity in rat nasal tissue and pathologic responses to inhalation of sulfur oxides. Journal of Aerosol Science, 1990 , 21, S463-S466	4.3	
5	Particle redistribution in the lungs and short term clearance after multiple inhalations. <i>Journal of Aerosol Science</i> , 1990 , 21, S487-S490	4.3	
4	Long-term exposure of dogs to a sulphur(IV) aerosolV. Effects on the pulmonary morphometry. Journal of Aerosol Science, 1991 , 22, S871-S874	4.3	
3	Analysis of the clearance of an inhaled cobalt oxide test aerosol from a dog. <i>Journal of Aerosol Science</i> , 1980 , 11, 249	4.3	
2	Particle Dosimetry 2006 , 47-74		
1	Biokinetic datasets of PEI F25-LMW complexed and non-complexed P-siRNA within different lung compartments. <i>Data in Brief</i> , 2016 , 7, 1175-1178	1.2	