Wolfgang Kreyling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2731235/publications.pdf Version: 2024-02-01

WOLFCANC KREVLING

#	Article	IF	CITATIONS
1	Translocation of Inhaled Ultrafine Particles to the Brain. Inhalation Toxicology, 2004, 16, 437-445.	0.8	2,116
2	Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2005, 2, 8.	2.8	1,678
3	Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells. Environmental Health Perspectives, 2005, 113, 1555-1560.	2.8	1,155
4	The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology, 2006, 3, 11.	2.8	1,067
5	EXTRAPULMONARY TRANSLOCATION OF ULTRAFINE CARBON PARTICLES FOLLOWING WHOLE-BODY INHALATION EXPOSURE OF RATS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2002, 65, 1531-1543.	1.1	892
6	TRANSLOCATION OF ULTRAFINE INSOLUBLE IRIDIUM PARTICLES FROM LUNG EPITHELIUM TO EXTRAPULMONARY ORGANS IS SIZE DEPENDENT BUT VERY LOW. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2002, 65, 1513-1530.	1.1	805
7	Nanotoxicology. Occupational and Environmental Medicine, 2004, 61, 727-728.	1.3	664
8	Deposition and biokinetics of inhaled nanoparticles. Particle and Fibre Toxicology, 2010, 7, 2.	2.8	534
9	Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 407-416.	2.0	493
10	Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 2010, 31, 6574-6581.	5.7	461
11	Biodistribution of 1.4―and 18â€nm Gold Particles in Rats. Small, 2008, 4, 2108-2111.	5.2	459
12	Health effects of particles in ambient air. International Journal of Hygiene and Environmental Health, 2004, 207, 399-407.	2.1	394
13	Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Particle and Fibre Toxicology, 2010, 7, 3.	2.8	386
14	Particulate Air Pollution and Risk of ST-Segment Depression During Repeated Submaximal Exercise Tests Among Subjects With Coronary Heart Disease. Circulation, 2002, 106, 933-938.	1.6	361
15	Long-Term Clearance Kinetics of Inhaled Ultrafine Insoluble Iridium Particles from the Rat Lung, Including Transient Translocation into Secondary Organs. Inhalation Toxicology, 2004, 16, 453-459.	0.8	358
16	Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhalation Toxicology, 2009, 21, 55-60.	0.8	340
17	Toxicological Hazards of Inhaled Nanoparticles—Potential Implications for Drug Delivery. Journal of Nanoscience and Nanotechnology, 2004, 4, 521-531.	0.9	333
18	In vivo integrity of polymer-coated gold nanoparticles. Nature Nanotechnology, 2015, 10, 619-623.	15.6	314

#	Article	IF	CITATIONS
19	Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology, 2012, 6, 36-46.	1.6	313
20	Epidemiological Evidence on Health Effects of Ultrafine Particles. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2002, 15, 189-201.	1.2	307
21	Ultrafine Particle–Lung Interactions: Does Size Matter?. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2006, 19, 74-83.	1.2	306
22	Deposition, Retention, and Translocation of Ultrafine Particles from the Central Airways and Lung Periphery. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 426-432.	2.5	303
23	Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environmental Health Perspectives, 2017, 125, 106002.	2.8	274
24	In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. Journal of Aerosol Science, 2011, 42, 668-692.	1.8	264
25	Health implications of nanoparticles. Journal of Nanoparticle Research, 2006, 8, 543-562.	0.8	251
26	A complementary definition of nanomaterial. Nano Today, 2010, 5, 165-168.	6.2	251
27	Efficient Elimination of Inhaled Nanoparticles from the Alveolar Region: Evidence for Interstitial Uptake and Subsequent Reentrainment onto Airways Epithelium. Environmental Health Perspectives, 2007, 115, 728-733.	2.8	245
28	Increased asthma medication use in association with ambient fine and ultrafine particles. European Respiratory Journal, 2002, 20, 691-702.	3.1	239
29	Air–Blood Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size. ACS Nano, 2014, 8, 222-233.	7.3	211
30	The Role of Macrophages in the Clearance of Inhaled Ultrafine Titanium Dioxide Particles. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 371-376.	1.4	205
31	Daily mortality and particulate matter in different size classes in Erfurt, Germany. Journal of Exposure Science and Environmental Epidemiology, 2007, 17, 458-467.	1.8	204
32	Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicology and Applied Pharmacology, 2010, 242, 66-78.	1.3	177
33	Dosimetry and Toxicology of Ultrafine Particles. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2004, 17, 140-152.	1.2	174
34	Concentrations of ultrafine, fine and PM2.5 particles in three European cities. Atmospheric Environment, 2001, 35, 3729-3738.	1.9	173
35	Distribution Pattern of Inhaled Ultrafine Gold Particles in the Rat Lung. Inhalation Toxicology, 2006, 18, 733-740.	0.8	173
36	Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. Journal of Exposure Science and Environmental Epidemiology, 2006, 16, 332-341.	1.8	170

#	Article	IF	CITATIONS
37	Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 438-449.	2.0	166
38	Differences in the Biokinetics of Inhaled Nano- versus Micrometer-Sized Particles. Accounts of Chemical Research, 2013, 46, 714-722.	7.6	165
39	Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach Environmental Health Perspectives, 2004, 112, 369-377.	2.8	164
40	Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers, 2009, 14, 67-73.	0.9	154
41	Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Particle and Fibre Toxicology, 2009, 6, 19.	2.8	153
42	Sources and elemental composition of ambient PM2.5 in three European cities. Science of the Total Environment, 2005, 337, 147-162.	3.9	144
43	Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology, 2011, 5, 1-11.	1.6	141
44	Effects of Silver Nanoparticles on the Liver and Hepatocytes In Vitro. Toxicological Sciences, 2013, 131, 537-547.	1.4	140
45	Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. Chemistry Central Journal, 2009, 3, 16.	2.6	133
46	Particle toxicology and health - where are we?. Particle and Fibre Toxicology, 2019, 16, 19.	2.8	133
47	Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Critical Reviews in Toxicology, 2013, 43, 1-20.	1.9	130
48	Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Science of the Total Environment, 2003, 305, 143-156.	3.9	129
49	Concentration Response Functions for Ultrafine Particles and All-Cause Mortality and Hospital Admissions: Results of a European Expert Panel Elicitation. Environmental Science & Technology, 2010, 44, 476-482.	4.6	129
50	Dose-controlled exposure of A549 epithelial cells at the air–liquid interface to airborne ultrafine carbonaceous particles. Chemosphere, 2006, 65, 1784-1790.	4.2	125
51	The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials, 2013, 34, 5439-5452.	5.7	120
52	Ultrafine Particles Exert Prothrombotic but Not Inflammatory Effects on the Hepatic Microcirculation in Healthy Mice In Vivo. Circulation, 2004, 109, 1320-1325.	1.6	119
53	PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein Journal of Nanotechnology, 2014, 5, 1944-1965.	1.5	119
54	Negligible clearance of ultrafine particles retained in healthy and affected human lungs. European Respiratory Journal, 2006, 28, 286-290.	3.1	117

#	Article	IF	CITATIONS
55	Effects of Fine and Ultrafine Particles on Cardiorespiratory Symptoms in Elderly Subjects with Coronary Heart Disease: The ULTRA Study. American Journal of Epidemiology, 2003, 157, 613-623.	1.6	116
56	Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. Nanotoxicology, 2017, 11, 443-453.	1.6	115
57	No Significant Translocation of Inhaled 35-nm Carbon Particles to the Circulation in Humans. Inhalation Toxicology, 2006, 18, 741-747.	0.8	113
58	The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 850-858.	2.7	113
59	A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human Health—ENPRA Project—The Highlights, Limitations, and Current and Future Challenges. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2016, 19, 1-28.	2.9	112
60	Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials, 2014, 35, 3455-3466.	5.7	111
61	Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2014, 27, 229-254.	0.7	111
62	Multifunctional Nanoparticles for Dual Imaging. Analytical Chemistry, 2011, 83, 2877-2882.	3.2	109
63	Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Particle and Fibre Toxicology, 2014, 11, 33.	2.8	108
64	Silver nanoparticles inhaled during pregnancy reach and affect the placenta and the foetus. Nanotoxicology, 2017, 11, 687-698.	1.6	102
65	Protein corona: implications for nanoparticle interactions with pulmonary cells. Particle and Fibre Toxicology, 2017, 14, 42.	2.8	99
66	Nanoparticles in the lung. Nature Biotechnology, 2010, 28, 1275-1276.	9.4	95
67	Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology, 2013, 24, 265103.	1.3	94
68	An interspecies comparison of the lung clearance of inhaled monodisperse cobalt oxide particles—Part I: Objectives and summary of results. Journal of Aerosol Science, 1989, 20, 169-188.	1.8	92
69	Toxic effects and biodistribution of ultrasmall gold nanoparticles. Archives of Toxicology, 2017, 91, 3011-3037.	1.9	87
70	Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. Journal of Nanoparticle Research, 2011, 13, 2675-2687.	0.8	83
71	Colloidal Stability and Surface Chemistry Are Key Factors for the Composition of the Protein Corona of Inorganic Gold Nanoparticles. Advanced Functional Materials, 2017, 27, 1701956.	7.8	76
72	Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Particle and Fibre Toxicology, 2013, 10, 19.	2.8	74

#	Article	IF	CITATIONS
73	Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. Science of the Total Environment, 2008, 398, 133-144.	3.9	73
74	Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Archives of Toxicology, 2011, 85, 751-773.	1.9	72
75	Inhalation of salt aerosol particles—i. Estimation of the temperature and relative humidity of the air in the human upper airways. Journal of Aerosol Science, 1988, 19, 343-363.	1.8	71
76	Comparison of two particle-size spectrometers for ambient aerosol measurements. Atmospheric Environment, 2000, 34, 139-149.	1.9	71
77	Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: Part 3. Nanotoxicology, 2017, 11, 454-464.	1.6	71
78	Short-Term Mortality Rates during a Decade of Improved Air Quality in Erfurt, Germany. Environmental Health Perspectives, 2009, 117, 448-454.	2.8	69
79	Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Microscopy Research and Technique, 2004, 63, 298-305.	1.2	68
80	Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: Part 1. Nanotoxicology, 2017, 11, 434-442.	1.6	68
81	Age-Dependent Rat Lung Deposition Patterns of Inhaled 20 Nanometer Gold Nanoparticles and their Quantitative Biokinetics in Adult Rats. ACS Nano, 2018, 12, 7771-7790.	7.3	66
82	Diverging long-term trends in ambient urban particle mass and number concentrations associated with emission changes caused by the German unification. Atmospheric Environment, 2003, 37, 3841-3848.	1.9	65
83	Fate and Toxic Effects of Inhaled Ultrafine Cadmium Oxide Particles in the Rat Lung. Inhalation Toxicology, 2004, 16, 83-92.	0.8	60
84	Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium. Particle and Fibre Toxicology, 2005, 2, 7.	2.8	60
85	Inter-laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation. NanoImpact, 2018, 10, 97-107.	2.4	59
86	Nanoparticle delivery in infant lungs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5092-5097.	3.3	58
87	The influence of hydrogen peroxide and histamine on lung permeability and translocation of iridium nanoparticles in the isolated perfused rat lung. Particle and Fibre Toxicology, 2005, 2, 3.	2.8	57
88	PM2.5 measurements in ambient aerosol: comparison between Harvard impactor (HI) and the tapered element oscillating microbalance (TEOM) system. Science of the Total Environment, 2001, 278, 191-197.	3.9	52
89	Relationship between different size classes of particulate matter and meteorology in three European cities. Journal of Environmental Monitoring, 2005, 7, 302.	2.1	52
90	Cytotoxic and proinflammatory effects of PVP-coated silver nanoparticles after intratracheal instillation in rats. Beilstein Journal of Nanotechnology, 2013, 4, 933-940.	1.5	52

#	Article	IF	CITATIONS
91	The influence of pulmonary surfactant on nanoparticulate drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 350-352.	2.0	51
92	Topical Drug Delivery in Chronic Rhinosinusitis Patients before and after Sinus Surgery Using Pulsating Aerosols. PLoS ONE, 2013, 8, e74991.	1.1	51
93	Daily variation in fine and ultrafine particulate air pollution and urinary concentrations of lung Clara cell protein CC16. Occupational and Environmental Medicine, 2004, 61, 908-914.	1.3	50
94	In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics. Beilstein Journal of Nanotechnology, 2014, 5, 1699-1711.	1.5	50
95	Long-term measurements of size-segregated ambient aerosol in two German cities located 100km apart. Atmospheric Environment, 2003, 37, 4687-4700.	1.9	48
96	Metrics, Dose, and Dose Concept: The Need for a Proper Dose Concept in the Risk Assessment of Nanoparticles. International Journal of Environmental Research and Public Health, 2014, 11, 4026-4048.	1.2	48
97	Change of the ambient particle size distribution in East Germany between 1993 and 1999. Atmospheric Environment, 2001, 35, 4357-4366.	1.9	47
98	Interspecies comparison of lung clearance after inhalation of monodisperse, solid cobalt oxide aerosol particles. Journal of Aerosol Science, 1991, 22, 509-535.	1.8	44
99	Discovery of unique and ENM— specific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats. Toxicology and Applied Pharmacology, 2016, 299, 41-46.	1.3	41
100	Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice. Particle and Fibre Toxicology, 2017, 14, 19.	2.8	38
101	Biodistribution of Inhaled Gold Nanoparticles in Mice and the Influence of Surfactant Protein D. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2013, 26, 24-30.	0.7	37
102	Radiolabelling of TiO2 nanoparticles for radiotracer studies. Journal of Nanoparticle Research, 2010, 12, 2435-2443.	0.8	36
103	Surface modification and size dependence in particle translocation during early embryonic development. Inhalation Toxicology, 2009, 21, 92-96.	0.8	35
104	Binding of polystyrene and carbon black nanoparticles to blood serum proteins. Inhalation Toxicology, 2011, 23, 468-475.	0.8	35
105	Efficient internalization and intracellular translocation of inhaled gold nanoparticles in rat alveolar macrophages. Nanomedicine, 2012, 7, 855-865.	1.7	35
106	Pulmonary surfactant is indispensable in order to simulate the in vivo situation. Particle and Fibre Toxicology, 2013, 10, 6.	2.8	35
107	Cardiovascular and inflammatory effects of intratracheally instilled ambient dust from Augsburg, Germany, in spontaneously hypertensive rats (SHRs). Particle and Fibre Toxicology, 2010, 7, 27.	2.8	34
108	Interspecies Comparison of Phagolysosomal pH in Alveolar Macrophages. Inhalation Toxicology, 1991, 3, 91-100.	0.8	33

#	Article	IF	CITATIONS
109	Postnatal lung function in the developing rat. Journal of Applied Physiology, 2008, 104, 1167-1176.	1.2	33
110	Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. Particle and Fibre Toxicology, 2014, 11, 19.	2.8	33
111	Comparison of experimental and calculated data for the total and regional deposition in the human lung. Journal of Aerosol Science, 1985, 16, 133-143.	1.8	32
112	Left-to-Right Asymmetry of Aerosol Deposition after Shallow Bolus Inhalation Depends on Lung Ventilation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2009, 22, 333-339.	0.7	30
113	Total and Regional Deposition of Ultrafine Particles in a Mouse Model of Allergic Inflammation of the Lung. Inhalation Toxicology, 2008, 20, 585-593.	0.8	29
114	Comparability of three spectrometers for monitoring urban aerosol. Atmospheric Environment, 2001, 35, 2045-2051.	1.9	28
115	Soluble iron modulates iron oxide particle-induced inflammatory responses via prostaglandin E2 synthesis: In vitro and in vivo studies. Particle and Fibre Toxicology, 2009, 6, 34.	2.8	28
116	Occupational and consumer risk estimates for nanoparticles emitted by laser printers. Journal of Nanoparticle Research, 2010, 12, 91-99.	0.8	28
117	Particle Transport from the Lower Respiratory Tract. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 1988, 1, 351-370.	1.2	27
118	Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm titanium dioxide nanoparticle aerosols in healthy adult rats after a single two-hour inhalation exposure. Particle and Fibre Toxicology, 2019, 16, 29.	2.8	27
119	Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies. Journal of Nanoparticle Research, 2011, 13, 511-524.	0.8	26
120	A generator for the production of radiolabelled ultrafine carbonaceous particles for deposition and clearance studies in the respiratory tract. Journal of Aerosol Science, 2006, 37, 631-644.	1.8	25
121	TOF-SIMS characterisation of spark-generated nanoparticles made from pairs of Ir–Ir and Ir–C electrodes. International Journal of Mass Spectrometry, 2006, 254, 70-84.	0.7	25
122	Lung Clearance in Long-Evans Rats after Inhalation of Porous, Monodisperse Cobalt Oxide Particles. Experimental Lung Research, 1993, 19, 445-467.	0.5	23
123	Conditions for measuring supersaturation in the human lung using aerosols. Journal of Aerosol Science, 1984, 15, 211-215.	1.8	22
124	Aerosol particle parameters maintaining lung clearance by intracellular dissolution and translocation. Journal of Aerosol Science, 1990, 21, 371-374.	1.8	21
125	Numerical and experimental study on the deposition of nanoparticles in an extrathoracic oral airway model. Journal of Aerosol Science, 2013, 57, 131-143.	1.8	21
126	Biokinetic studies of non-complexed siRNA versus nano-sized PEI F25-LMW/siRNA polyplexes following intratracheal instillation into mice. International Journal of Pharmaceutics, 2016, 500, 227-235.	2.6	21

#	Article	IF	CITATIONS
127	Corrections in Dose Assessment of99mTc Radiolabeled Aerosol Particles Targeted to Central Human Airways Using Planar Gamma Camera Imaging. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2009, 22, 45-54.	0.7	20
128	Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1½-hour inhalation exposure. Particle and Fibre Toxicology, 2020, 17, 21.	2.8	20
129	Design, operation and performance of whole body chambers for long-term aerosol exposure of large experimental animals. Journal of Aerosol Science, 1992, 23, 279-290.	1.8	19
130	Early Response of the Canine Respiratory Tract Following Long-Term Exposure to a Sulfur(IV) Aerosol at Low Concentration. V. Morphology and Morphometry. Inhalation Toxicology, 1992, 4, 247-272.	0.8	18
131	Phagolysosomal Morphology and Dissolution of Cobalt Oxide Particles by Human and Rabbit Alveolar Macrophages. Experimental Lung Research, 1995, 21, 51-66.	0.5	18
132	Macrophage functions measured by magnetic microparticles in vivo and in vitro. Journal of Magnetism and Magnetic Materials, 2001, 225, 218-225.	1.0	18
133	Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices. Beilstein Journal of Nanotechnology, 2014, 5, 2440-2449.	1.5	18
134	A novel assay for the quantification of internalized nanoparticles in macrophages. Nanotoxicology, 2008, 2, 232-242.	1.6	17
135	Aerosol particle growth in the human airways using a calculated humidity profile. Journal of Aerosol Science, 1983, 14, 196-199.	1.8	15
136	Early Response of the Canine Respiratory Tract Following Long-Term Exposure to a Sulfur(IV) Aerosol at low Concentration. III. Macrophage-Mediated Long-Term Particle Clearance. Inhalation Toxicology, 1992, 4, 197-233.	0.8	15
137	Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology. Health Physics, 2015, 108, 179-194.	0.3	15
138	Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats. Particle and Fibre Toxicology, 2022, 19, .	2.8	15
139	An interspecies comparison of the lung clearance of inhaled monodisperse cobalt oxide particles—Part IV: Lung clearance of inhaled cobalt oxide particles in Beagle dogs. Journal of Aerosol Science, 1989, 20, 219-232.	1.8	14
140	Intercomparison of Aerosol Spectrometers for Ambient Air Monitoring. Aerosol Science and Technology, 2002, 36, 866-876.	1.5	14
141	AEROSOL DELIVERY DURING MECHANICAL VENTILATION TO THE RAT. Experimental Lung Research, 2004, 30, 635-651.	0.5	14
142	The procoagulant effects of fine particulate matter in vivo. Particle and Fibre Toxicology, 2011, 8, 12.	2.8	14
143	Pulmonary DWCNT exposure causes sustained local and low-level systemic inflammatory changes in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 412-420.	2.0	14
144	Gold nanoparticle aerosols for rodent inhalation and translocation studies. Journal of Nanoparticle Research, 2013, 15, 1,	0.8	14

#	Article	IF	CITATIONS
145	To the Editors:. European Respiratory Journal, 2010, 35, 226-227.	3.1	13
146	Interspecies comparison of lung clearance after inhalation of monodisperse, solid cobalt oxide aerosol particles. Journal of Aerosol Science, 1989, 20, 1317-1320.	1.8	11
147	Interspecies Comparison of the Clearance of Ionic Cobalt from the Lungs. Inhalation Toxicology, 1994, 6, 225-240.	0.8	11
148	Macrophage Cellular Adaptation, Localization and Imaging of Different Size Polystyrene Particles. Nano Biomedicine and Engineering, 2009, 1, .	0.3	11
149	The influence of improved air quality on mortality risks in Erfurt, Germany. Research Report (health) Tj ETQq1 1 0	.784314 r	gBT_/Overloc
150	Improved Ventricular Function during Inhalation of PGI ₂ Aerosol Partly Relies on Enhanced Myocardial Contractility. European Surgical Research, 2005, 37, 9-17.	0.6	10
151	Unpredictable Nanoparticle Retention in Commonly Used Plastic Syringes Introduces Dosage Uncertainties That May Compromise the Accuracy of Nanomedicine and Nanotoxicology Studies. Frontiers in Pharmacology, 2019, 10, 1293.	1.6	9
152	Analysis of intraphagolysosomal dissolution of test particles in canine alveolar macrophages. Journal of Aerosol Science, 1988, 19, 1071-1074.	1.8	8
153	Production of 1111n-labelled monodisperse aerosol particles. Journal of Aerosol Science, 1989, 20, 1289-1292.	1.8	8
154	Intracellular Particle Dissolution in Macrophages Isolated from the Lung of the Fischer (F-344) Rat. Experimental Lung Research, 1994, 20, 143-156.	0.5	8
155	Facilities for chronic exposure of dogs to sulfite aerosols. Journal of Aerosol Science, 1988, 19, 971-973.	1.8	7
156	Long-term exposure of dogs to a sulphite aerosol: I. Rationale and design parameters. Journal of Aerosol Science, 1990, 21, S471-S474.	1.8	7
157	Continuous dispersion of aqueous solutions by a modified vibrating orifice aerosol generator. Journal of Aerosol Science, 1985, 16, 261-263.	1.8	6
158	Long-term exposure of dogs to a sulphite aerosol: III. Effect of lung clearance. Journal of Aerosol Science, 1990, 21, S479-S482.	1.8	6
159	Estimation of the deposition of polydisperse hygroscopic aerosol particles in the respiratory tract. Journal of Aerosol Science, 1991, 22, S863-S866.	1.8	6
160	Advances in lung imaging techniques for the treatment of respiratory disease. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 87-92.	0.5	6
161	Multimodal imaging for the detection of sub-micron particles in the gas-exchange region of the mammalian lung. Journal of Physics: Conference Series, 2009, 186, 012040.	0.3	6
162	Deep pulmonary lymphatics in immature lungs. Journal of Applied Physiology, 2009, 107, 859-863.	1.2	6

#	Article	IF	CITATIONS
163	Particle Dosimetry. , 2006, , 47-74.		6
164	Particle transport from the lower respiratory tract. Journal of Aerosol Science, 1987, 18, 749-752.	1.8	5
165	An Interspecies Comparison of the Translocation of Material from Lung to Blood. Annals of Occupational Hygiene, 0, , .	1.9	5
166	A scintillation counter for measuring removal of radioactive particles from dog lungs. Journal of Aerosol Science, 1989, 20, 1297-1300.	1.8	5
167	Motion and twisting of magnetic particles ingested by alveolar macrophages in the human lung: effect of smoking and disease. Biomagnetic Research and Technology, 2006, 4, 4.	2.0	5
168	Properties of a sodiumbisulfite aerosol. Journal of Aerosol Science, 1989, 20, 1277-1280.	1.8	4
169	Translocation and accumulation of nanoparticles in secondary target organs after uptake by various routes of intake. Toxicology Letters, 2006, 164, S34.	0.4	4
170	Long-term responses of canine lungs to acidic particles. Inhalation Toxicology, 2009, 21, 920-932.	0.8	4
171	An aerosol nebulizer for low concentrated particle suspensions. Journal of Aerosol Science, 1983, 14, 264-267.	1.8	3
172	Measurement on mucociliary clearance in the upper airwaysof beagle dogs. Journal of Aerosol Science, 1991, 22, S867-S870.	1.8	3
173	In Vivo Evaluation of Chemical Biopersistence of Nonfibrous Inorganic Particles. Environmental Health Perspectives, 1994, 102, 119.	2.8	3
174	Radionuclide biokinetics database (RBDATA-EULEP): an update. Radiation Protection Dosimetry, 2004, 112, 535-536.	0.4	3
175	PARTICULATE MATTER IN SEVERAL SIZE CLASSES AND DAILY MORTALITY IN ERFURT, GERMANY. Epidemiology, 2004, 15, S59.	1.2	3
176	Ultrafine Particles: Geiser et al. Respond. Environmental Health Perspectives, 2006, 114, A212-A213.	2.8	3
177	Some physical properties of cobalt oxide aerosol used for lung retention studies. Journal of Aerosol Science, 1980, 11, 248.	1.8	2
178	Estimation of health risks and safety margins due to inhalation of ultrafine particles and nanoparticles in selected occupational, consumer and environmental settings. Journal of Physics: Conference Series, 2009, 170, 012031.	0.3	2
179	Dosimetry of Inhaled Nanoparticles. , 2010, , 145-171.		2
180	High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue. , 2011, , .		2

High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue. , 2011, , . 180

#	Article	IF	CITATIONS
181	Dosimetry and Toxicology of Nanosized Particles and Fibres. Handbook of Environmental Chemistry, 2015, , 1-18.	0.2	2
182	Determination of the retention of test aerosols inhaled by beagle dogs. Journal of Aerosol Science, 1979, 10, 220-221.	1.8	1
183	The dependency of the lung retention on cobalt aerosol parameters. Journal of Aerosol Science, 1984, 15, 229-232.	1.8	1
184	Influence of the Growth of Salt Aerosol Particles on Deposition in the Lung. Annals of Occupational Hygiene, 1988, , .	1.9	1
185	Intercomparison of particle size spectrometers. Journal of Aerosol Science, 1989, 20, 1481-1484.	1.8	1
186	Production of monodisperse, fluorescently and radioactively labelled aerosol particles. Journal of Aerosol Science, 1992, 23, 181-184.	1.8	1
187	36 P 03 A miniature jet nebulizer for aerosol bolus delivery to respiratory airways via bronchoscopy. Journal of Aerosol Science, 1993, 24, S451-S452.	1.8	1
188	Parameters of nanoparticles determining distribution and accumulation in secondary target organs. Toxicology Letters, 2007, 172, S35.	0.4	1
189	Motion and twisting of magnetic particles ingested by alveolar macrophages in non-smokers and smokers: Implementation of viscoelasticity. Journal of Magnetism and Magnetic Materials, 2007, 311, 269-274.	1.0	1
190	Cell shape imaging analysis: A fast and reliable technique for the investigation of internalised carbon nanotubes in flat macrophages. Journal of Physics: Conference Series, 2009, 151, 012033.	0.3	1
191	Biokinetic datasets of PEI F25-LMW complexed and non-complexed 32P-siRNA within different lung compartments. Data in Brief, 2016, 7, 1175-1178.	0.5	1
192	Analysis of the clearance of an inhaled cobalt oxide test aerosol from a dog. Journal of Aerosol Science, 1980, 11, 249.	1.8	0
193	Sulfite oxidase activity in rat nasal tissue and pathologic responses to inhalation of sulfur oxides. Journal of Aerosol Science, 1990, 21, S463-S466.	1.8	0
194	Particle redistribution in the lungs and short term clearance after multiple inhalations. Journal of Aerosol Science, 1990, 21, S487-S490.	1.8	0
195	Long-term exposure of dogs to a sulphur(IV) aerosolV. Effects on the pulmonary morphometry. Journal of Aerosol Science, 1991, 22, S871-S874.	1.8	0
196	Retained particle burden in the lungs of monkeys after chronic quartz dust exposure. Journal of Aerosol Science, 1992, 23, 507-510.	1.8	0
197	31.O.03 Responses of the canine lungs during long-term exposure to a neutral sulfite and an acidic sulfate aerosol at low concentrations. Journal of Aerosol Science, 1994, 25, 551.	1.8	0
198	The "wetness―of ambient aerosol and its influence on sizing and collection. Journal of Aerosol Science, 1998, 29, S963-S964.	1.8	0

#	Article	IF	CITATIONS
199	Ultrafine Particles: Geiser et al. Respond. Environmental Health Perspectives, 2006, 114, .	2.8	0
200	High Resolution 3-dimensional Imaging Of Ultrafine Particles In The Lung Parenchyma. , 2010, , .		0
201	Quantitative Biokinetics Study In Healthy Adult Rats Over 28 Days After Inhalation Of 20NM Titanium Dioxide (TIO2) Anatase Nanoparticles Aerosols. , 2011, , .		0
202	Expert Elicitation on Health Effects Related to Exposure to Ultrafine Particles: Likelihood of Causality and Causal Pathways. Epidemiology, 2009, 20, S68-S69.	1.2	0