
Maciej Zalas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2730968/publications.pdf Version: 2024-02-01

MACIEL ZALAS

#	Article	IF	CITATIONS
1	Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline. Applied Surface Science, 2020, 520, 146344.	3.1	106
2	Photocatalytic hydrogen generation over lanthanides-doped titania. Solar Energy Materials and Solar Cells, 2005, 89, 287-296.	3.0	94
3	Gadolinium-modified titanium oxide materials for photoenergy applications: a review. Journal of Rare Earths, 2014, 32, 487-495.	2.5	40
4	SYNTHESIS OF SUBSTITUTED 1,3,4-THIADIAZOLES USING LAWESSON'S REAGENT. Organic Preparations and Procedures International, 2005, 37, 213-222.	0.6	35
5	Synthesis of new dendritic antenna-like polypyridine ligands. Chemical Papers, 2012, 66, .	1.0	31
6	Synthesis of Titanium Dioxide via Surfactant-Assisted Microwave Method for Photocatalytic and Dye-Sensitized Solar Cells Applications. Catalysts, 2020, 10, 586.	1.6	26
7	The Influence of Titania Electrode Modification with Lanthanide Ions Containing Thin Layer on the Performance of Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-8.	1.4	25
8	Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture. Scientific Reports, 2016, 6, 30077.	1.6	24
9	Aggregation and Electrolyte Composition Effects on the Efficiency of Dye-Sensitized Solar Cells. A Case of a Near-Infrared Absorbing Dye for Tandem Cells. Journal of Physical Chemistry C, 2014, 118, 194-205.	1.5	23
10	Increase in efficiency of dye-sensitized solar cells by porous TiO2 layer modification with gadolinium-containing thin layer. Journal of Rare Earths, 2011, 29, 783-786.	2.5	22
11	Synthesis of a novel dinuclear ruthenium polypyridine dye for dye-sensitized solar cells application. Polyhedron, 2014, 67, 381-387.	1.0	22
12	A Novel Photocatalytic Purification System for Fish Culture. Zebrafish, 2017, 14, 411-421.	0.5	19
13	Synthesis of N-doped template-free mesoporous titania for visible light photocatalytic applications. Catalysis Today, 2014, 230, 91-96.	2.2	17
14	Application of paper industry waste materials containing TiO2 for dye-sensitized solar cells fabrication. Optik, 2018, 158, 469-476.	1.4	16
15	2-Thiohydantoin Moiety as a Novel Acceptor/Anchoring Group of Photosensitizers for Dye-Sensitized Solar Cells. Materials, 2020, 13, 2065.	1.3	15
16	The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells. Dyes and Pigments, 2018, 150, 335-346.	2.0	12
17	¹⁷ 0 NMR studies of substituted 1,3,4â€oxadiazoles. Magnetic Resonance in Chemistry, 2011, 49, 648-654.	1.1	11
18	The <i>Cortinarius</i> Fungi Dyes as Sensitizers in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2015, 2015, 1-6.	1.4	11

MACIEJ ZALAS

#	Article	IF	CITATIONS
19	Optimization of platinum precursor concentration for new, fast and simple fabrication method of counter electrode for DSSC application. Optik, 2020, 206, 164314.	1.4	10
20	The TiO2-ZnO Systems with Multifunctional Applications in Photoactive Processes—Efficient Photocatalyst under UV-LED Light and Electrode Materials in DSSCs. Materials, 2021, 14, 6063.	1.3	10
21	Template free synthesis of locally-ordered mesoporous titania and its application in dye-sensitized solar cells. Materials Chemistry and Physics, 2012, 134, 170-176.	2.0	9
22	New Gel-Like Polymers as Selective Weak-Base Anion Exchangers. PLoS ONE, 2015, 10, e0122891.	1.1	9
23	Electroâ€oxidation of diclofenac in methanol as studied by highâ€performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 1662-1666.	0.7	6
24	How Can the Introduction of Zr4+ Ions into TiO2 Nanomaterial Impact the DSSC Photoconversion Efficiency? A Comprehensive Theoretical and Experimental Consideration. Materials, 2021, 14, 2955.	1.3	6
25	A novel microwave-assisted strategy to fabricate multifunctional photoactive titania-based heterostructures with enhanced activity. Materials Research Bulletin, 2022, 147, 111633.	2.7	6
26	Mass spectrometric decomposition of N-arylbenzonitrilium ions. International Journal of Mass Spectrometry, 2005, 242, 1-4.	0.7	5
27	15N NMR study of substituted 2-(phenylamino)-5-phenyl-1,3,4-oxadiazoles. Magnetic Resonance in Chemistry, 2007, 45, 123-127.	1.1	5
28	Impact of dyes isomerization effect on the charge transfer phenomenon occurring on the dye/nanosemiconductor interface. Solar Energy Materials and Solar Cells, 2021, 219, 110771.	3.0	4
29	Experimental and theoretical insight into DSSCs mechanism influenced by different doping metal ions. Applied Surface Science, 2022, 597, 153607.	3.1	4
30	Differentiation of fluoronitroaniline isomers by negative-ion electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 361-364.	0.7	3
31	Methyl group transfer upon gas phase decomposition of protonated methyl benzoate and similar compounds. Journal of Mass Spectrometry, 2018, 53, 379-384.	0.7	3
32	Novel Si-tripodand functionalized ionic liquids as iodide sources for dye-sensitized solar cells. Electrochimica Acta, 2013, 108, 736-740.	2.6	2
33	Effect of Solvent Variations in the Alcothermal Synthesis of Template-Free Mesoporous Titania for Dye-Sensitized Solar Cells Applications. PLoS ONE, 2016, 11, e0164670.	1.1	2
34	Intramolecular hydrogen exchange prior to methanol loss from protonated methyl benzoates bearing different ring substituents under CID conditions. Journal of Mass Spectrometry, 2018, 53, 1022-1025.	0.7	2
35	Electronic States of Tris(bipyridine) Ruthenium(II) Complexes in Neat Solid Films Investigated by Electroabsorption Spectroscopy. Materials, 2022, 15, 2278.	1.3	2
36	Multinuclear magnetic resonance studies of fluoronitroanilines. Magnetic Resonance in Chemistry, 2009, 47, 764-770.	1.1	1

MACIEJ ZALAS

#	Article	IF	CITATIONS
37	Multinuclear magnetic resonance studies of 2â€arylâ€1,3,4â€thiadiazoles. Magnetic Resonance in Chemistry, 2012, 50, 637-641.	1.1	1
38	Influence of carboxylic group or methyl ester group on the interactions of copper cation with aromatic system of naproxen, naphthalene acetic acids and their methyl esters. International Journal of Mass Spectrometry, 2016, 394, 29-32.	0.7	1
39	Erratum to "Synthesis of a novel dinuclear ruthenium polypyridine dye for dye-sensitized solar cells application―[Polyhedron 67 (2014) 381–387]. Polyhedron, 2021, 204, 113966.	1.0	1
40	Copper complexes formed by 3,5-bis(2,2′-bipyridin-4-ylethynyl)benzoic acid and its methyl and ethyl esters as studied by electrospray ionization mass spectrometry. Open Chemistry, 2013, 11, 2066-2075.	1.0	0
41	Formation of the [M+Cu+4Cl] ⁺ ion under laser desorption ionization conditions as a result of Cl addition to a C≡C bond (M – methyl or ethyl ester of 3,5â€bis(2,2'â€bipyridinâ€4â€ylethynyl)ber	nzootc) Tj E	T Q q1 1 0.7
42	Unexpected formation of [M]2+ from [M+CuCl+H]2+ ions under CID conditions, where M is a molecule of 3,5-bis(2,2'-bipyridin-4-ylethynyl)benzoic acid or its methyl ester. Open Chemistry, 2015, 13, .	1.0	0
43	Influence of water molecule on the complexes of methyl naphthoate isomers with metal cations. International Journal of Mass Spectrometry, 2016, 405, 9-12.	0.7	0
44	Corrigendum to "Synthesis of a novel dinuclear ruthenium polypyridine dye for dye-sensitized solar cells application―[Polyhedron 67 (2014) 381–387]. Polyhedron, 2021, 204, 114246.	1.0	0
45	Comments on: Hydrogen treated TiO2 nanoparticles onto FTO glass as photoanode for dye-sensitized solar cells with remarkably enhanced performance [International Journal of Hydrogen Energy 46 (2021) 14311–14321; doi: 10.1016/j.ijhydene.2021.01.184]. International Journal of Hydrogen Energy, 2021, 4 30216-30217.	16 ^{3.8}	0
46	Laser Desorption/Ionization Mass Spectrometry as a Potential Tool for Evaluation of Hydroxylation Degree of Various Types of Titanium Dioxide Materials. Materials, 2021, 14, 6848.	1.3	0
47	Microwave-assisted synthesis of TiO2-ZnO oxide systems with enhanced photocatalytic and photovoltaic activity. , 0, , .		0