Kalimuthu Vijayarangamuthu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273096/publications.pdf Version: 2024-02-01

Кашмитни

#	Article	IF	CITATIONS
1	Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy. Journal of Alloys and Compounds, 2014, 610, 706-712.	5.5	79
2	Degussa P25 TiO 2 modified with H 2 O 2 under microwave treatment to enhance photocatalytic properties. Catalysis Today, 2018, 303, 305-312.	4.4	74
3	A type-II MoS2/ZnO heterostructure with enhanced photocatalytic activity. Materials Letters, 2019, 243, 183-186.	2.6	53
4	Prototype electrochromic device and dye sensitized solar cell using spray deposited undoped and â€~Li' doped V2O5 thin film electrodes. Current Applied Physics, 2015, 15, 622-631.	2.4	45
5	Temporospatial Control of Graphene Wettability. Advanced Materials, 2016, 28, 661-667.	21.0	39
6	A Raman spectroscopic study of structural evolution of electrochemically deposited ZnO films with deposition time. Materials Chemistry and Physics, 2011, 126, 568-572.	4.0	35
7	â€~Li' doping induced physicochemical property modifications of MoO3 thin films. Applied Surface Science, 2013, 284, 624-633.	6.1	30
8	Synthesis and photoluminescence properties of Sm3+ doped LiGd(WO4)2 phosphors with high color purity. Optical Materials, 2020, 102, 109804.	3.6	25
9	Ge nanocrystals embedded in a GeOx matrix formed by thermally annealing of Ge oxide films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 731-733.	2.1	14
10	Low Frequency Ultrasonication of Degussa P25 TiO ₂ and Its Superior Photocatalytic Properties. Journal of Nanoscience and Nanotechnology, 2016, 16, 4399-4404.	0.9	14
11	Modification of the structural and optical properties of tin oxide nanoparticles by Co doping and thermal annealing. Applied Physics A: Materials Science and Processing, 2014, 114, 1181-1188.	2.3	12
12	One-step synthesis of Au-coated porous silicon as a surface enhanced Raman scattering substrate for biomolecule detection. Materials Letters, 2017, 204, 115-119.	2.6	11
13	200ÂMeV Ag15+ ion beam irradiation induced modifications in spray deposited MoO3 thin films by fluence variation. Nuclear Engineering and Technology, 2019, 51, 1983-1990.	2.3	11
14	Facile synthesis of core–shell-structured rutile TiO2 with enhanced photocatalytic properties. Catalysis Today, 2020, 347, 18-22.	4.4	11
15	Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation. Nuclear Engineering and Technology, 2020, 52, 2585-2593.	2.3	11
16	Nanostructured Tin Oxide as a Surfaceâ€Enhanced Raman Scattering Substrate for the Detection of Nitroaromatic Compounds. International Journal of Applied Ceramic Technology, 2015, 12, 790-794.	2.1	10
17	Effect of 200â€ [–] MeV Ag15+ ion beam irradiation at different fluences on WO3 thin films. Nuclear Instruments & Methods in Physics Research B, 2019, 439, 51-58.	1.4	10
18	200†MeV Ag15+ swift heavy ion beam induced property modifications in Nb2O5 thin films by fluence variation. Journal of Physics and Chemistry of Solids, 2019, 135, 109089.	4.0	8

Кашмитни

#	Article	IF	CITATIONS
19	Enhancement of photocatalytic disinfection of surface modified rutile TiO2 nanocatalyst. Korean Journal of Chemical Engineering, 2016, 33, 2392-2395.	2.7	7
20	Growth mechanism and optical properties of Ge nanocrystals embedded in a GeOx matrix. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	7
21	A spectroscopic ellispometric study of the tunability of the optical constants and thickness of GeOx films with swift heavy ions. Journal of Applied Physics, 2011, 110, .	2.5	5
22	Effective Removal of Heavy Metals from Wastewater Using Modified Clay. Journal of Nanoscience and Nanotechnology, 2016, 16, 4469-4473.	0.9	4
23	UV photoluminescence from nanocrystalline tin oxide synthesized by a one-step hydrothermal method. Materials Letters, 2015, 157, 11-14.	2.6	3
24	100 MeV O7+ irradiation induced red shift in the band gaps of 3 wt% 'Li' doped Nb2O5 thin film. , 2014, , .		1
25	Graphene: Temporospatial Control of Graphene Wettability (Adv. Mater. 4/2016). Advanced Materials, 2016, 28, 594-594.	21.0	1
26	Morphology Control of Zinc Oxide Nanostructure on Single Layer Graphene. Journal of Nanoscience and Nanotechnology, 2016, 16, 4417-4421.	0.9	1
27	Refractive Index of Ge Nanocrystals Embedded in a GeO[sub x] Matrix. , 2011, , .		0