Jose M Gonzalez-Dominguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2730806/publications.pdf

Version: 2024-02-01

70 papers 2,813 citations

28 h-index 52 g-index

72 all docs

72 docs citations

72 times ranked 4516 citing authors

#	Article	IF	CITATIONS
1	Promises, facts and challenges for graphene in biomedical applications. Chemical Society Reviews, 2017, 46, 4400-4416.	18.7	564
2	Development and characterization of PEEK/carbon nanotube composites. Carbon, 2009, 47, 3079-3090.	5.4	170
3	Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether) Tj ETQq $1\ 1\ 0.7$	843]4 rgB	ST /Overlock
4	High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties. Carbon, 2010, 48, 3500-3511.	5.4	114
5	Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale, 2018, 10, 11820-11830.	2.8	90
6	High performance PEEK/carbon nanotube composites compatibilized with polysulfones-I. Structure and thermal properties. Carbon, 2010, 48, 3485-3499.	5.4	88
7	The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Nanotechnology, 2009, 20, 315707.	1.3	87
8	Graphene Improves the Biocompatibility of Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for Neuronal Growth. Scientific Reports, 2017, 7, 10942.	1.6	87
9	Solvent-Free Preparation of High-Toughness Epoxyâ^'SWNT Composite Materials. ACS Applied Materials & amp; Interfaces, 2011, 3, 1441-1450.	4.0	70
10	Effect of Various Aminated Single-Walled Carbon Nanotubes on the Epoxy Cross-Linking Reactions. Journal of Physical Chemistry C, 2011, 115, 7238-7248.	1.5	63
11	Production of ready-to-use few-layer graphene in aqueous suspensions. Nature Protocols, 2018, 13, 495-506.	5 . 5	62
12	Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. Journal of Materials Chemistry, 2012, 22, 21285.	6.7	58
13	Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Composites Science and Technology, 2017, 152, 263-274.	3.8	57
14	Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors. Biosensors and Bioelectronics, 2016, 86, 308-314.	5.3	54
15	Smart Hybrid Graphene Hydrogels: A Study of the Different Responses to Mechanical Stretching Stimulus. ACS Applied Materials & Study of the Different Responses to Mechanical Stretching Stimulus. ACS Applied Materials & Study of the Different Responses to Mechanical Stretching Stimulus.	4.0	53
16	Processing and properties of PEEK/glass fiber laminates: Effect of addition of single-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1267-1279.	3.8	50
17	Controlling the surface chemistry of graphene oxide: Key towards efficient ZnO-GO photocatalysts. Catalysis Today, 2020, 357, 350-360.	2.2	50
18	Grafting of a hydroxylated poly(ether ether ketone) to the surface of single-walled carbon nanotubes. Journal of Materials Chemistry, 2010, 20, 8285.	6.7	48

#	Article	IF	CITATIONS
19	Production and stability of mechanochemically exfoliated graphene in water and culture media. Nanoscale, 2016, 8, 14548-14555.	2.8	46
20	Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43904-43914.	4.0	45
21	Surfactant-free assembling of functionalized single-walled carbon nanotube buckypapers. Carbon, 2010, 48, 1480-1488.	5.4	44
22	Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale, 2018, 10, 11604-11615.	2.8	44
23	Single-walled carbon nanotubes covalently functionalized with cysteine: A new alternative for the highly sensitive and selective Cd(II) quantification. Sensors and Actuators B: Chemical, 2017, 249, 506-514.	4.0	35
24	Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols. Analytica Chimica Acta, 2016, 909, 51-59.	2.6	33
25	Reduced Graphene Oxide Aerogels with Controlled Continuous Microchannels for Environmental Remediation. ACS Applied Nano Materials, 2019, 2, 1210-1222.	2.4	33
26	Epoxy composites with covalently anchored amino-functionalized SWNTs: towards the tailoring of physical properties through targeted functionalization. Journal of Materials Chemistry, 2011, 21, 14948.	6.7	31
27	Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 1269-1278.	2.6	31
28	Unique Properties and Behavior of Nonmercerized Type-II Cellulose Nanocrystals as Carbon Nanotube Biocompatible Dispersants. Biomacromolecules, 2019, 20, 3147-3160.	2.6	30
29	Electrochemical sensing of guanine, adenine and 8-hydroxy-2′-deoxyguanosine at glassy carbon modified with single-walled carbon nanotubes covalently functionalized with lysine. RSC Advances, 2016, 6, 13469-13477.	1.7	29
30	Separation of single-walled carbon nanotubes from graphite by centrifugation in a surfactant or in polymer solutions. Carbon, 2010, 48, 2917-2924.	5.4	25
31	Optical absorption response of chemically modified single-walled carbon nanotubes upon ultracentrifugation in various dispersants. Carbon, 2014, 66, 105-118.	5.4	25
32	Wrapping of SWCNTs in Polyethylenoxide-Based Amphiphilic Diblock Copolymers: An Approach to Purification, Debundling, and Integration into the Epoxy Matrix. Journal of Physical Chemistry C, 2012, 116, 7399-7408.	1.5	24
33	Peptide-based biomaterials. Linking l-tyrosine and poly l-tyrosine to graphene oxide nanoribbons. Journal of Materials Chemistry B, 2015, 3, 3870-3884.	2.9	24
34	Cysteine functionalized bio-nanomaterial for the affinity sensing of Pb(II) as an indicator of environmental damage. Microchemical Journal, 2018, 141, 271-278.	2.3	24
35	Graphene quantum dots: From efficient preparation to safe renal excretion. Nano Research, 2021, 14, 674-683.	5.8	24
36	Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112363.	2.5	24

#	Article	IF	Citations
37	Influence of Air Oxidation on the Surfactant-Assisted Purification of Single-Walled Carbon Nanotubes. Langmuir, 2011, 27, 7192-7198.	1.6	22
38	The viscosity of dilute carbon nanotube (1D) and graphene oxide (2D) nanofluids. Physical Chemistry Chemical Physics, 2020, 22, 11474-11484.	1.3	21
39	Tailored SWCNT functionalization optimized for compatibility with epoxy matrices. Nanotechnology, 2012, 23, 285701.	1.3	19
40	Poly(ether ether ketone)-based hierarchical composites for tribological applications. Chemical Engineering Journal, 2013, 218, 285-294.	6.6	17
41	Filling Single-Walled Carbon Nanotubes with Lutetium Chloride: A Sustainable Production of Nanocapsules Free of Nonencapsulated Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 2501-2508.	3.2	17
42	Choosing the Chemical Route for Carbon Nanotube Integration in Poly(vinylidene fluoride). Journal of Physical Chemistry C, 2012, 116, 16217-16225.	1.5	16
43	Multipurpose Nature of Rapid Covalent Functionalization on Carbon Nanotubes. Chemistry - A European Journal, 2015, 21, 18631-18641.	1.7	15
44	Integration of block copolymer-wrapped single-wall carbon nanotubes into a trifunctional epoxy resin. Influence on thermal performance. Polymer Degradation and Stability, 2010, 95, 2065-2075.	2.7	14
45	Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties. Nanotechnology, 2012, 23, 285702.	1.3	14
46	Singleâ€Wall Carbon Nanotubes Covalently Functionalized with Polylysine: Synthesis, Characterization and Analytical Applications for the Development of Electrochemical (Bio)Sensors. Electroanalysis, 2014, 26, 1676-1683.	1.5	14
47	Electrochemical Sensor for the Quantification of Dopamine Using Glassy Carbon Electrodes Modified with Singleâ€Wall Carbon Nanotubes Covalently Functionalized with Polylysine. Electroanalysis, 2015, 27, 1565-1571.	1.5	13
48	Transparent conducting films made of different carbon nanotubes, processed carbon nanotubes, and graphene nanoribbons. Chemical Engineering Science, 2015, 138, 566-574.	1.9	13
49	Block Copolymer Assisted Dispersion of Single Walled Carbon Nanotubes and Integration into a Trifunctional Epoxy. Journal of Nanoscience and Nanotechnology, 2009, 9, 6104-6112.	0.9	11
50	Activated carbon from cherry stones by chemical activation: Influence of the impregnation method on porous structure. Journal of Wood Chemistry and Technology, 2017, 37, 148-162.	0.9	11
51	Effect of nanocellulose polymorphism on electrochemical analytical performance in hybrid nanocomposites with non-oxidized single-walled carbon nanotubes. Mikrochimica Acta, 2022, 189, 62.	2.5	10
52	A tool box to ascertain the nature of doping and photoresponse in single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2019, 21, 4063-4071.	1.3	9
53	Experimental, Numerical, and Analytical Study on The Effect of Graphene Oxide in The Mechanical Properties of a Solvent-Free Reinforced Epoxy Resin. Polymers, 2019, 11, 2115.	2.0	9
54	Waterborne Graphene- and Nanocellulose-Based Inks for Functional Conductive Films and 3D Structures. Nanomaterials, 2021, 11, 1435.	1.9	9

#	Article	IF	CITATIONS
55	Modification of Physicochemical Properties and Boosting Electrical Conductivity of Reduced Graphene Oxide Aerogels by Postsynthesis Treatment. Journal of Physical Chemistry C, 2020, 124, 13739-13752.	1.5	9
56	Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angewandte Chemie - International Edition, 2022, 61 , .	7.2	9
57	Piezoresistive response of Pluronic-wrapped single-wall carbon nanotube–epoxy composites. Journal of Intelligent Material Systems and Structures, 2012, 23, 909-917.	1.4	8
58	A chemically reactive spinning dope for significant improvements in wet spun carbon nanotube fibres. Chemical Communications, 2013, 49, 3973.	2.2	8
59	Thiolated Graphene Oxide Nanoribbons as Templates for Anchoring Gold Nanoparticles: Twoâ€Dimensional Nanostructures for SERS. ChemPlusChem, 2019, 84, 862-871.	1.3	8
60	Extraordinary Protective Efficacy of Graphene Oxide over the Stoneâ€Based Cultural Heritage. Advanced Materials Interfaces, 2021, 8, 2101012.	1.9	8
61	The influence of the impregnation method on yield of activated carbon produced by H3PO4 activation. Materials Letters, 2011, 65, 1423-1426.	1.3	7
62	Evaluation of the efficacy of carbon nanotubes for delivering peptides into mitochondria. RSC Advances, 2016, 6, 67232-67241.	1.7	7
63	Slow diffusion co-assembly as an efficient tool to tune colour emission in alkynyl benzoazoles. Dyes and Pigments, 2020, 176, 108246.	2.0	6
64	How does phosphoric acid interact with cherry stones? A discussion on overlooked aspects of chemical activation. Wood Science and Technology, 2018, 52, 1645-1669.	1.4	5
65	Modulation of waveguide behaviour of an ICT 2H-Benzo[d][1,2,3]Triazole derivative with graphene. Organic Electronics, 2019, 68 , 1 - 8 .	1.4	5
66	Differential properties and effects of fluorescent carbon nanoparticles towards intestinal theranostics. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110612.	2.5	5
67	Optimizing Bacterial Cellulose Production Towards Materials for Water Remediation. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 391-403.	0.2	5
68	Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angewandte Chemie, 2022, 134, .	1.6	2
69	Carbon Nanostructures and Polysaccharides for Biomedical Materials. RSC Nanoscience and Nanotechnology, 2021, , 98-152.	0.2	0
70	Editorial for "Properties and Applications of Graphene and Its Derivatives― Nanomaterials, 2022, 12, 602.	1.9	0