Julian H George

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2730671/publications.pdf

Version: 2024-02-01

623188 794141 3,570 21 14 19 citations g-index h-index papers 22 22 22 6258 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploring and Engineering the Cell Surface Interface. Science, 2005, 310, 1135-1138.	6.0	2,383
2	Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews, 2009, 38, 1139.	18.7	677
3	Novel materials for bone and cartilage regeneration. Current Opinion in Chemical Biology, 2006, 10, 568-575.	2.8	110
4	Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnology Advances, 2020, 42, 107370.	6.0	78
5	Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem Cell Research, 2018, 32, 126-134.	0.3	65
6	Electrical Property Characterization of Neural Stem Cells in Differentiation. PLoS ONE, 2016, 11, e0158044.	1,1	29
7	Study of neuroprotective function of <scp><i>G</i></scp> <i>inkgo biloba</i> extract (<scp><i>EG</i></scp> <i>b761</i>) derivedâ€flavonoid monomers using a threeâ€dimensional stem cellâ€derived neural model. Biotechnology Progress, 2016, 32, 735-744.	1.3	25
8	Electrophysiological Properties and Synaptic Function of Mesenchymal Stem Cells during Neurogenic Differentiation – a Mini-Review. International Journal of Artificial Organs, 2012, 35, 323-337.	0.7	23
9	Transcriptomics of human multipotent mesenchymal stromal cells: Retrospective analysis and future prospects. Biotechnology Advances, 2017, 35, 407-418.	6.0	22
10	Optogenetic control of iPS cellâ€derived neurons in 2D and 3D culture systems using channelrhodopsinâ€2 expression driven by the synapsinâ€1 and calciumâ€calmodulin kinase II promoters. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 369-384.	1.3	22
11	A closer look at neuron interaction with track-etched microporous membranes. Scientific Reports, 2018, 8, 15552.	1.6	21
12	Increased connectivity of hiPSC-derived neural networks in multiphase granular hydrogel scaffolds. Bioactive Materials, 2022, 9, 358-372.	8.6	21
13	Aligned electrospun fibers for neural patterning. Biotechnology Letters, 2018, 40, 601-607.	1.1	18
14	Engineered method for directional growth of muscle sheets on electrospun fibers. Journal of Biomedical Materials Research - Part A, 2018, 106, 1165-1176.	2.1	15
15	Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation. Macromolecular Rapid Communications, 2020, 41, 2000191.	2.0	15
16	Sacrificial Core-Based Electrospinning: A Facile and Versatile Approach to Fabricate Devices for Potential Cell and Tissue Encapsulation Applications. Nanomaterials, 2018, 8, 863.	1.9	12
17	lon current and action potential alterations in peripheral neurons subject to uniaxial strain. Journal of Neuroscience Research, 2019, 97, 744-751.	1.3	12
18	Membrane Mechanical Properties Regulate the Effect of Strain on Spontaneous Electrophysiology in Human iPSC-Derived Neurons. Neuroscience, 2019, 404, 165-174.	1.1	11

#	Article	IF	CITATIONS
19	Engineering a uniaxial substrate-stretching device for simultaneous electrophysiological measurements and imaging of strained peripheral neurons. Medical Engineering and Physics, 2019, 67, 1-10.	0.8	8
20	4.13 Use and Manipulation of Microporous Membranes in Mammalian Cell Cultures., 2017,, 272-292.		3
21	Optogenetically Engineered Neurons Differentiated from Human SH-SY5Y Cells Survived and Expressed ChR2 in 3D Hydrogel. Biomedicines, 2022, 10, 1534.	1.4	O