Ashtamurthy S Pawate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2730445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events. Lab on A Chip, 2019, 19, 2598-2609.	6.0	11
2	X-ray transparent microfluidic platforms for membrane protein crystallization with microseeds. Lab on A Chip, 2018, 18, 944-954.	6.0	19
3	X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization. Biomicrofluidics, 2017, 11, 024118.	2.4	7
4	Nonâ€Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling. ChemSusChem, 2017, 10, 4198-4206.	6.8	7
5	A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space. CrystEngComm, 2016, 18, 7722-7727.	2.6	19
6	Crystallization Optimization of Pharmaceutical Solid Forms with X-ray Compatible Microfluidic Platforms. Crystal Growth and Design, 2015, 15, 1201-1209.	3.0	29
7	Chemical Analysis of Drug Biocrystals: A Role for Counterion Transport Pathways in Intracellular Drug Disposition. Molecular Pharmaceutics, 2015, 12, 2528-2536.	4.6	38
8	A Method of Cryoprotection for Protein Crystallography by Using a Microfluidic Chip and Its Application for in Situ X-ray Diffraction Measurements. Analytical Chemistry, 2015, 87, 4194-4200.	6.5	20
9	Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 823-830.	0.8	29
10	<i>In situ</i> serial Laue diffraction on a microfluidic crystallization device. Journal of Applied Crystallography, 2014, 47, 1975-1982.	4.5	29
11	X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination. Crystal Growth and Design, 2014, 14, 4886-4890.	3.0	29
12	A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab on A Chip, 2013, 13, 3183.	6.0	40
13	An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases. Analyst, The, 2013, 138, 5384.	3.5	25
14	Fabrication of X-ray compatible microfluidic platforms for protein crystallization. Sensors and Actuators B: Chemical, 2012, 174, 1-9.	7.8	59
15	Decoupling Mutations in the D-Channel of the aa3-Type Cytochrome c Oxidase from Rhodobacter sphaeroides Suggest That a Continuous Hydrogen-Bonded Chain of Waters Is Essential for Proton Pumping. Biochemistry, 2010, 49, 4476-4482.	2.5	28
16	Flash-Photolysis of Fully Reduced and Mixed-Valence CO-Bound <i>Rhodobacter sphaeroides</i> Cytochrome <i>c</i> Oxidase:  Heme Spectral Shifts. Biochemistry, 2007, 46, 12568-12578.	2.5	11
17	Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proceedings of the United States of America, 2006, 103, 317-322.	7.1	89
18	Replacing Asn207 by Aspartate at the Neck of the D Channel in the aa3-Type Cytochrome c Oxidase from Rhodobacter sphaeroides Results in Decoupling the Proton Pump, Biochemistry, 2006, 45, 14064-14074	2.5	44

#	Article	IF	CITATIONS
19	Mutations which decouple the proton pump of the cytochromecoxidase fromRhodobacter sphaeroidesperturb the environment of glutamate 286. FEBS Letters, 2006, 580, 4613-4617.	2.8	23
20	Transmembrane Charge Separation during the Ferryl-oxo → Oxidized Transition in a Nonpumping Mutant of Cytochrome c Oxidase. Journal of Biological Chemistry, 2004, 279, 52558-52565.	3.4	75
21	Redox-coupled proton translocation in biological systems: Proton shuttling in cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15543-15547.	7.1	88
22	A Mutation in Subunit I of Cytochrome Oxidase fromRhodobacter sphaeroidesResults in an Increase in Steady-State Activity but Completely Eliminates Proton Pumpingâ€. Biochemistry, 2002, 41, 13417-13423.	2.5	122