
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2730113/publications.pdf Version: 2024-02-01

Нира У Тосня

#	Article	IF	CITATIONS
1	Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 1999, 23, 185-188.	21.4	4,459
2	Towards a proteome-scale map of the human protein–protein interaction network. Nature, 2005, 437, 1173-1178.	27.8	2,676
3	Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genetics, 1993, 4, 221-226.	21.4	1,673
4	Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nature Genetics, 1997, 15, 62-69.	21.4	1,606
5	MeCP2, a Key Contributor to Neurological Disease, Activates and Represses Transcription. Science, 2008, 320, 1224-1229.	12.6	1,582
6	Trinucleotide Repeat Disorders. Annual Review of Neuroscience, 2007, 30, 575-621.	10.7	1,289
7	Glutamine Repeats and Neurodegeneration. Annual Review of Neuroscience, 2000, 23, 217-247.	10.7	1,243
8	The Story of Rett Syndrome: From Clinic to Neurobiology. Neuron, 2007, 56, 422-437.	8.1	1,097
9	Math1: An Essential Gene for the Generation of Inner Ear Hair Cells. Science, 1999, 284, 1837-1841.	12.6	1,042
10	Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 2010, 468, 263-269.	27.8	1,042
11	The DNA sequence of the human X chromosome. Nature, 2005, 434, 325-337.	27.8	985
12	Ataxin-1 Nuclear Localization and Aggregation. Cell, 1998, 95, 41-53.	28.9	965
13	Requirement of <i>Math1</i> for Secretory Cell Lineage Commitment in the Mouse Intestine. Science, 2001, 294, 2155-2158.	12.6	808
14	Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genetics, 1998, 19, 148-154.	21.4	802
15	Mice with Truncated MeCP2 Recapitulate Many Rett Syndrome Features and Display Hyperacetylation of Histone H3. Neuron, 2002, 35, 243-254.	8.1	723
16	Diseases of Unstable Repeat Expansion: Mechanisms and Common Principles. Nature Reviews Genetics, 2005, 6, 743-755.	16.3	716
17	A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration. Cell, 2006, 125, 801-814.	28.9	714
18	Synaptic Dysfunction in Neurodevelopmental Disorders Associated with Autism and Intellectual Disabilities. Cold Spring Harbor Perspectives in Biology, 2012, 4, a009886-a009886.	5.5	650

#	Article	IF	CITATIONS
19	Identification of genes that modify ataxin-1-induced neurodegeneration. Nature, 2000, 408, 101-106.	27.8	648
20	Math1 is essential for genesis of cerebellar granule neurons. Nature, 1997, 390, 169-172.	27.8	636
21	Postnatal Neurodevelopmental Disorders: Meeting at the Synapse?. Science, 2003, 302, 826-830.	12.6	621
22	SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell, 1995, 82, 937-948.	28.9	567
23	Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Human Molecular Genetics, 2004, 13, 2679-2689.	2.9	540
24	Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature, 1997, 389, 971-974.	27.8	531
25	DJ-1 Is a Redox-Dependent Molecular Chaperone That Inhibits α-Synuclein Aggregate Formation. PLoS Biology, 2004, 2, e362.	5.6	529
26	Math1 Expression Redefines the Rhombic Lip Derivatives and Reveals Novel Lineages within the Brainstem and Cerebellum. Neuron, 2005, 48, 31-43.	8.1	519
27	Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature Genetics, 2000, 26, 191-194.	21.4	505
28	Learning and Memory and Synaptic Plasticity Are Impaired in a Mouse Model of Rett Syndrome. Journal of Neuroscience, 2006, 26, 319-327.	3.6	493
29	Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nature Genetics, 1993, 5, 254-258.	21.4	489
30	Mutation of the E6-AP Ubiquitin Ligase Reduces Nuclear Inclusion Frequency While Accelerating Polyglutamine-Induced Pathology in SCA1 Mice. Neuron, 1999, 24, 879-892.	8.1	482
31	Rett Syndrome and Beyond: Recurrent Spontaneous and Familial MECP2 Mutations at CpG Hotspots. American Journal of Human Genetics, 1999, 65, 1520-1529.	6.2	463
32	Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Human Molecular Genetics, 2002, 11, 115-124.	2.9	461
33	MeCP2 Controls Excitatory Synaptic Strength by Regulating Glutamatergic Synapse Number. Neuron, 2007, 56, 58-65.	8.1	439
34	Genetic regulation of cerebellar development. Nature Reviews Neuroscience, 2001, 2, 484-491.	10.2	427
35	Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17551-17558.	7.1	413
36	Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1. Cell, 2003, 113, 457-468.	28.9	402

#	Article	IF	CITATIONS
37	The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development (Cambridge), 2002, 129, 2495-2505.	2.5	396
38	Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature, 2008, 455, 912-918.	27.8	367
39	Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nature Neuroscience, 2000, 3, 157-163.	14.8	341
40	Sensitivity to Oxidative Stress in DJ-1-Deficient Dopamine Neurons: An ES- Derived Cell Model of Primary Parkinsonism. PLoS Biology, 2004, 2, e327.	5.6	338
41	SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature, 2013, 503, 72-77.	27.8	323
42	A Long CAG Repeat in the Mouse Sca1 Locus Replicates SCA1 Features and Reveals the Impact of Protein Solubility on Selective Neurodegeneration. Neuron, 2002, 34, 905-919.	8.1	320
43	Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Human Molecular Genetics, 2005, 14, 205-220.	2.9	318
44	Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Annals of Neurology, 2000, 47, 670-679.	5.3	314
45	Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced Disease in SCA1 Transgenic Mice. Neuron, 2003, 38, 375-387.	8.1	303
46	Expression analysis of the ataxin–1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genetics, 1995, 10, 94-98.	21.4	291
47	Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature, 2008, 452, 713-718.	27.8	287
48	ATAXIN-1 Interacts with the Repressor Capicua in Its Native Complex to Cause SCA1 Neuropathology. Cell, 2006, 127, 1335-1347.	28.9	284
49	Proprioceptor Pathway Development Is Dependent on MATH1. Neuron, 2001, 30, 411-422.	8.1	280
50	Autism and other neuropsychiatric symptoms are prevalent in individuals with <i>MeCP2</i> duplication syndrome. Annals of Neurology, 2009, 66, 771-782.	5.3	271
51	Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes and Development, 2005, 19, 2412-2417.	5.9	267
52	The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development (Cambridge), 2002, 129, 2495-505.	2.5	265
53	Purkinje Cell Expression of a Mutant Allele of <i>SCA1</i> in Transgenic Mice Leads to Disparate Effects on Motor Behaviors, Followed by a Progressive Cerebellar Dysfunction and Histological Alterations. Journal of Neuroscience, 1997, 17, 7385-7395.	3.6	261
54	MeCP2 dysfunction in Rett syndrome and related disorders. Current Opinion in Genetics and Development, 2006, 16, 276-281.	3.3	258

#	Article	IF	CITATIONS
55	Intestine-Specific Ablation of Mouse atonal homolog 1 (Math1) Reveals a Role in Cellular Homeostasis. Gastroenterology, 2007, 132, 2478-2488.	1.3	258
56	Recovery from Polyglutamine-Induced Neurodegeneration in Conditional SCA1 Transgenic Mice. Journal of Neuroscience, 2004, 24, 8853-8861.	3.6	257
57	MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5509-5514.	7.1	256
58	Merkel Cells Are Essential for Light-Touch Responses. Science, 2009, 324, 1580-1582.	12.6	253
59	The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature, 1997, 389, 974-978.	27.8	246
60	Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genetics in Medicine, 2006, 8, 784-792.	2.4	245
61	Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21966-21971.	7.1	240
62	The zinc finger transcription factorGfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development (Cambridge), 2003, 130, 221-232.	2.5	233
63	Deletion of Mecp2 in Sim1-Expressing Neurons Reveals a Critical Role for MeCP2 in Feeding Behavior, Aggression, and the Response to Stress. Neuron, 2008, 59, 947-958.	8.1	230
64	Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Human Molecular Genetics, 2009, 18, 2431-2442.	2.9	228
65	Adult Neural Function Requires MeCP2. Science, 2011, 333, 186-186.	12.6	227
66	Enhanced anxiety and stress-induced corticosterone release are associated with increased <i>Crh</i> expression in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18267-18272.	7.1	225
67	RORα-Mediated Purkinje Cell Development Determines Disease Severity in Adult SCA1 Mice. Cell, 2006, 127, 697-708.	28.9	210
68	Pathogenic Mechanisms of a Polyglutamine-mediated Neurodegenerative Disease, Spinocerebellar Ataxia Type 1. Journal of Biological Chemistry, 2009, 284, 7425-7429.	3.4	206
69	ldentification of a putative γ-aminobutyric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6q14–q21 and mouse chromosome 4. Genomics, 1992, 12, 801-806.	2.9	204
70	SCA7 Knockin Mice Model Human SCA7 and Reveal Gradual Accumulation of Mutant Ataxin-7 in Neurons and Abnormalities in Short-Term Plasticity. Neuron, 2003, 37, 383-401.	8.1	201
71	Protein Interactome Reveals Converging Molecular Pathways Among Autism Disorders. Science Translational Medicine, 2011, 3, 86ra49.	12.4	201
72	Mice Lacking Ataxin-1 Display Learning Deficits and Decreased Hippocampal Paired-Pulse Facilitation. Journal of Neuroscience, 1998, 18, 5508-5516.	3.6	197

#	Article	IF	CITATIONS
73	Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin–proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Human Molecular Genetics, 2005, 14, 679-691.	2.9	196
74	miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nature Neuroscience, 2008, 11, 1137-1139.	14.8	194
75	Organization, inducible-expression and chromosome localization of the human HMG-I(Y) nonhistone protein gene. Nucleic Acids Research, 1993, 21, 4259-4267.	14.5	191
76	Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum–associated degradation pathway. Genetics in Medicine, 2014, 16, 751-758.	2.4	191
77	The AXH Domain of Ataxin-1 Mediates Neurodegeneration through Its Interaction with Gfi-1/Senseless Proteins. Cell, 2005, 122, 633-644.	28.9	189
78	Lessons learned from studying syndromic autism spectrum disorders. Nature Neuroscience, 2016, 19, 1408-1417.	14.8	185
79	Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nature Genetics, 2011, 43, 1074-1081.	21.4	184
80	Preclinical research in Rett syndrome: setting the foundation for translational success. DMM Disease Models and Mechanisms, 2012, 5, 733-745.	2.4	183
81	Rett Syndrome and MeCP2: Linking Epigenetics and Neuronal Function. American Journal of Human Genetics, 2002, 71, 1259-1272.	6.2	181
82	Rett syndrome: Methyl-CpG-binding protein 2 mutations and phenotype-genotype correlations. American Journal of Medical Genetics Part A, 2000, 97, 147-152.	2.4	180
83	Gametic and somatic tissue–specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nature Genetics, 1995, 10, 344-350.	21.4	179
84	Epigenetics and Human Disease. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019497.	5.5	177
85	CHIP Protects from the Neurotoxicity of Expanded and Wild-type Ataxin-1 and Promotes Their Ubiquitination and Degradation. Journal of Biological Chemistry, 2006, 281, 26714-26724.	3.4	176
86	A partial loss of function allele of Methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Human Molecular Genetics, 2008, 17, 1718-1727.	2.9	173
87	MECP2 disorders: from the clinic to mice and back. Journal of Clinical Investigation, 2015, 125, 2914-2923.	8.2	172
88	The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15382-15387.	7.1	169
89	Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Human Molecular Genetics, 2004, 13, 2535-2543.	2.9	168
90	Diagnostic Testing for Rett Syndrome by DHPLC and Direct Sequencing Analysis of the MECP2 Gene: Identification of Several Novel Mutations and Polymorphisms. American Journal of Human Genetics, 2000, 67, 1428-1436.	6.2	167

#	Article	IF	CITATIONS
91	Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides. Nature, 2015, 528, 123-126.	27.8	166
92	Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Human Molecular Genetics, 2009, 18, 2188-2203.	2.9	165
93	The Future of Psychiatric Research: Genomes and Neural Circuits. Science, 2010, 327, 1580-1581.	12.6	164
94	Deletion of Atoh1 Disrupts Sonic Hedgehog Signaling in the Developing Cerebellum and Prevents Medulloblastoma. Science, 2009, 326, 1424-1427.	12.6	163
95	Female Mecp2+/â^² mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Human Molecular Genetics, 2013, 22, 96-109.	2.9	158
96	atonal Regulates Neurite Arborization but Does Not Act as a Proneural Gene in the Drosophila Brain. Neuron, 2000, 25, 549-561.	8.1	156
97	Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant Ca _V 2.1 channels. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11987-11992.	7.1	156
98	Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Human Molecular Genetics, 2011, 20, 3366-3375.	2.9	149
99	Lithium Therapy Improves Neurological Function and Hippocampal Dendritic Arborization in a Spinocerebellar Ataxia Type 1 Mouse Model. PLoS Medicine, 2007, 4, e182.	8.4	147
100	Math1 Is Essential for the Development of Hindbrain Neurons Critical for Perinatal Breathing. Neuron, 2009, 64, 341-354.	8.1	146
101	Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nature Genetics, 2012, 44, 206-211.	21.4	146
102	Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice. Nature, 2015, 526, 430-434.	27.8	146
103	Exercise and Genetic Rescue of SCA1 via the Transcriptional Repressor Capicua. Science, 2011, 334, 690-693.	12.6	144
104	Loss of MeCP2 in Parvalbumin-and Somatostatin-Expressing Neurons in Mice Leads to Distinct Rett Syndrome-like Phenotypes. Neuron, 2015, 88, 651-658.	8.1	144
105	Glutamine-Expanded Ataxin-7 Alters TFTC/STAGA Recruitment and Chromatin Structure Leading to Photoreceptor Dysfunction. PLoS Biology, 2006, 4, e67.	5.6	143
106	Reduction of Biogenic Amine Levels in the Rett Syndrome. New England Journal of Medicine, 1985, 313, 921-924.	27.0	142
107	In vivo <i>Atoh1</i> targetome reveals how a proneural transcription factor regulates cerebellar development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3288-3293.	7.1	141
108	Interruptions in the Triplet Repeats of SCA1 and FRAXA Reduce the Propensity and Complexity of Slipped Strand DNA (S-DNA) Formationâ€. Biochemistry, 1998, 37, 2701-2708.	2.5	139

#	Article	IF	CITATIONS
109	Pumilio1 Haploinsufficiency Leads to SCA1-like Neurodegeneration by Increasing Wild-Type Ataxin1 Levels. Cell, 2015, 160, 1087-1098.	28.9	139
110	SCA1-like Disease in Mice Expressing Wild-Type Ataxin-1 with a Serine to Aspartic Acid Replacement at Residue 776. Neuron, 2010, 67, 929-935.	8.1	137
111	Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nature Genetics, 1995, 10, 89-93.	21.4	136
112	Characterization of the Transcriptome of Nascent Hair Cells and Identification of Direct Targets of the Atoh1 Transcription Factor. Journal of Neuroscience, 2015, 35, 5870-5883.	3.6	136
113	Rett Syndrome: A Prototypical Neurodevelopmental Disorder. Neuroscientist, 2004, 10, 118-128.	3.5	135
114	Solving the Autism Puzzle a Few Pieces at a Time. Neuron, 2011, 70, 806-808.	8.1	134
115	Generation of a Mouse Model for Arginase II Deficiency by Targeted Disruption of the Arginase II Gene. Molecular and Cellular Biology, 2001, 21, 811-813.	2.3	128
116	Spinocerebellar ataxia: Variable age of onset and linkage to human leukocyte antigen in a large kindred. Annals of Neurology, 1988, 23, 580-584.	5.3	126
117	Spinocerebellar ataxia type 1. Seminars in Cell Biology, 1995, 6, 29-35.	3.4	125
118	NR2F1 Mutations Cause Optic Atrophy with Intellectual Disability. American Journal of Human Genetics, 2014, 94, 303-309.	6.2	125
119	Rett's syndrome: Characterization of respiratory patterns and sleep. Annals of Neurology, 1987, 21, 377-382.	5.3	124
120	Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for <i>Math1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22462-22467.	7.1	124
121	Dendritic Arborization and Spine Dynamics Are Abnormal in the Mouse Model of <i>MECP2</i> Duplication Syndrome. Journal of Neuroscience, 2013, 33, 19518-19533.	3.6	123
122	Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21715-21726.	7.1	122
123	Molecular genetics of Rett syndrome and clinical spectrum of MECP2 mutations. Current Opinion in Neurology, 2001, 14, 171-176.	3.6	120
124	X-Chromosome Inactivation Patterns Are Unbalanced and Affect the Phenotypic Outcome in a Mouse Model of Rett Syndrome. American Journal of Human Genetics, 2004, 74, 511-520.	6.2	120
125	Reduction of Nuak1 Decreases Tau and Reverses Phenotypes in a Tauopathy Mouse Model. Neuron, 2016, 92, 407-418.	8.1	120
126	Patterns of X chromosome inactivation in the rett syndrome. Brain and Development, 1990, 12, 131-135.	1.1	119

#	Article	IF	CITATIONS
127	RAS–MAPK–MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature, 2013, 498, 325-331.	27.8	119
128	Partial Loss of Ataxin-1 Function Contributes to Transcriptional Dysregulation in Spinocerebellar Ataxia Type 1 Pathogenesis. PLoS Genetics, 2010, 6, e1001021.	3.5	113
129	Disruption of the ATXN1–CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. Nature Genetics, 2017, 49, 527-536.	21.4	113
130	<i>Atoh1</i> -Lineal Neurons Are Required for Hearing and for the Survival of Neurons in the Spiral Ganglion and Brainstem Accessory Auditory Nuclei. Journal of Neuroscience, 2009, 29, 11123-11133.	3.6	111
131	Mouse and fly models of neurodegeneration. Trends in Genetics, 2002, 18, 463-471.	6.7	110
132	Insufficient Evidence for "Autism-Specific―Genes. American Journal of Human Genetics, 2020, 106, 587-595.	6.2	110
133	The CAG/Polyglutamine Tract Diseases: Gene Products and Molecular Pathogenesis. Brain Pathology, 1997, 7, 927-942.	4.1	109
134	A New Rett Syndrome Family Consistent with X-Linked Inheritance Expands the X Chromosome Exclusion Map. American Journal of Human Genetics, 1997, 61, 634-641.	6.2	107
135	Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease. Annals of Neurology, 1995, 38, 68-72.	5.3	106
136	Antisense oligonucleotide–mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight, 2018, 3, .	5.0	106
137	Impaired Conditioned Fear and Enhanced Long-Term Potentiation inFmr2 Knock-Out Mice. Journal of Neuroscience, 2002, 22, 2753-2763.	3.6	105
138	Increased Expression of α _{1A} Ca ²⁺ Channel Currents Arising from Expanded Trinucleotide Repeats in Spinocerebellar Ataxia Type 6. Journal of Neuroscience, 2001, 21, 9185-9193.	3.6	104
139	Drosophila atonal Fully Rescues the Phenotype of Math1 Null Mice. Current Biology, 2002, 12, 1611-1616.	3.9	104
140	A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell, 2018, 172, 924-936.e11.	28.9	103
141	Polyglutamine diseases: protein cleavage and aggregation. Current Opinion in Neurobiology, 1999, 9, 566-570.	4.2	102
142	Inactivation of hnRNP K by Expanded Intronic AUUCU Repeat Induces Apoptosis Via Translocation of PKCĨ´ to Mitochondria in Spinocerebellar Ataxia 10. PLoS Genetics, 2010, 6, e1000984.	3.5	102
143	Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurology, The, 2020, 19, 689-698.	10.2	102
144	A high resolution deletion map of human chromosome Xp22. Nature Genetics, 1993, 4, 272-279.	21.4	101

#	Article	IF	CITATIONS
145	Microphthalmia with linear skin defects (MLS) syndrome: Clinical, cytogenetic, and molecular characterization. American Journal of Medical Genetics Part A, 1994, 49, 229-234.	2.4	100
146	Mapping of the gene for a novel spinocerebellar ataxia with pure cerebellar signs and epilepsy. Annals of Neurology, 1999, 45, 407-411.	5.3	100
147	Increased Trinucleotide Repeat Instability with Advanced Maternal Age. Human Molecular Genetics, 1997, 6, 2135-2139.	2.9	97
148	TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. ELife, 2016, 5,	6.0	97
149	Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes and Development, 2013, 27, 485-490.	5.9	95
150	Cerebrospinal fluid biogenic amines and biopterin in rett syndrome. Annals of Neurology, 1989, 25, 56-60.	5.3	92
151	Parkinson's Disease Genetics and Pathophysiology. Annual Review of Neuroscience, 2021, 44, 87-108.	10.7	92
152	ATXN1 Protein Family and CIC Regulate Extracellular Matrix Remodeling and Lung Alveolarization. Developmental Cell, 2011, 21, 746-757.	7.0	89
153	Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. ELife, 2016, 5, .	6.0	89
154	Aberrant myofibril assembly in tropomodulin1 null mice leads to aborted heart development and embryonic lethality. Journal of Cell Biology, 2003, 163, 1033-1044.	5.2	88
155	Loss and Gain of MeCP2 Cause Similar Hippocampal Circuit Dysfunction that Is Rescued by Deep Brain Stimulation in a Rett Syndrome Mouse Model. Neuron, 2016, 91, 739-747.	8.1	88
156	SUMOylation of the Polyglutamine Repeat Protein, Ataxin-1, Is Dependent on a Functional Nuclear Localization Signal. Journal of Biological Chemistry, 2005, 280, 21942-21948.	3.4	87
157	Cerebellar Transcriptome Profiles of ATXN1 Transgenic Mice Reveal SCA1 Disease Progression and Protection Pathways. Neuron, 2016, 89, 1194-1207.	8.1	86
158	Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders. ELife, 2016, 5, .	6.0	86
159	The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1291-1296.	7.1	85
160	Rapid identification of yeast artificial chromosome clones by matrix pooling and crude Iysate PCR. Nucleic Acids Research, 1990, 18, 7191-7191.	14.5	84
161	Altered Trafficking of Membrane Proteins in Purkinje Cells of SCA1 Transgenic Mice. American Journal of Pathology, 2001, 159, 905-913.	3.8	83
162	dAtaxin-2 Mediates Expanded Ataxin-1-Induced Neurodegeneration in a Drosophila Model of SCA1. PLoS Genetics, 2007, 3, e234.	3.5	83

#	Article	IF	CITATIONS
163	Sequencing, Expression Analysis, and Mapping of Three Unique Human Tropomodulin Genes and Their Mouse Orthologs. Genomics, 2000, 63, 97-107.	2.9	81
164	Reversing Neurodegeneration: A Promise Unfolds. Cell, 2000, 101, 1-4.	28.9	81
165	Modelling brain diseases in mice: the challenges of design and analysis. Nature Reviews Genetics, 2003, 4, 296-307.	16.3	81
166	Molecular Cloning of the cDNA Encoding a Human Renal Sodium Phosphate Transport Protein and Its Assignment to Chromosome 6p21.3-p23. Genomics, 1993, 18, 355-359.	2.9	79
167	ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron, 2018, 97, 1235-1243.e5.	8.1	79
168	Expanding Our Understanding of Polyglutamine Diseases through Mouse Models. Neuron, 1999, 24, 499-502.	8.1	78
169	Discordance of muscular dystrophy in monozygotic female twins: Evidence supporting asymmetric splitting of the inner cell mass in a manifesting carrier of Duchenne dystrophy. American Journal of Medical Genetics Part A, 1991, 40, 354-364.	2.4	76
170	Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded ataxin-1 into native complexes. Nature Genetics, 2007, 39, 373-379.	21.4	75
171	NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. ELife, 2015, 4, .	6.0	74
172	Somatic and Germline Instability of the ATTCT Repeat in Spinocerebellar Ataxia Type 10. American Journal of Human Genetics, 2004, 74, 1216-1224.	6.2	73
173	Neurodegeneration: From cellular concepts to clinical applications. Science Translational Medicine, 2016, 8, 364ps18.	12.4	73
174	The expanding world of ataxins. Nature Genetics, 1996, 14, 237-238.	21.4	72
175	The expansion of the CAG repeat in ataxin-2 is a frequent cause of autosomal dominant spinocerebellar ataxia. Neurology, 1997, 49, 1009-1013.	1.1	72
176	Enhanced SUMOylation in polyglutamine diseases. Biochemical and Biophysical Research Communications, 2002, 293, 307-313.	2.1	72
177	Rett-causing mutations reveal two domains critical for MeCP2 function and for toxicity in MECP2 duplication syndrome mice. ELife, 2014, 3, .	6.0	72
178	Mice lacking tropomodulin-2 show enhanced long-term potentiation, hyperactivity, and deficits in learning and memory. Molecular and Cellular Neurosciences, 2003, 23, 1-12.	2.2	71
179	MeCP2 Dysfunction in Humans and Mice. Journal of Child Neurology, 2005, 20, 736-740.	1.4	71
180	Genetic Modifiers of MeCP2 Function in Drosophila. PLoS Genetics, 2008, 4, e1000179.	3.5	70

#	Article	IF	CITATIONS
181	Rett syndrome: Controlled study of an oral opiate antagonist, naltrexone. Annals of Neurology, 1994, 35, 464-470.	5.3	69
182	Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Human Molecular Genetics, 2016, 25, ddw337.	2.9	68
183	Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1079-1081.	4.0	66
184	Fragile X-like behaviors and abnormal cortical dendritic spines in Cytoplasmic FMR1-interacting protein 2-mutant mice. Human Molecular Genetics, 2015, 24, 1813-1823.	2.9	66
185	Dissection of the Cellular and Molecular Events that Position Cerebellar Purkinje Cells: A Study of the <i>math1</i> Null-Mutant Mouse. Journal of Neuroscience, 2002, 22, 8110-8116.	3.6	65
186	Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis. Human Molecular Genetics, 2007, 16, 2315-2325.	2.9	65
187	Regional rescue of spinocerebellar ataxia type 1 phenotypes by <i>14-3-3</i> ε haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2142-2147.	7.1	65
188	Otud7a Knockout Mice Recapitulate Many Neurological Features of 15q13.3 Microdeletion Syndrome. American Journal of Human Genetics, 2018, 102, 296-308.	6.2	65
189	Balanced X chromosome inactivation patterns in the Rett syndrome brain. American Journal of Medical Genetics Part A, 2002, 111, 164-168.	2.4	64
190	Genetic mapping of four dinucleotide repeat loci, DXS453, DXS458, DXS454, and DXS424, on the X chromosome using multiplex polymerase chain reaction. Genomics, 1992, 13, 375-380.	2.9	62
191	Cloning and Characterization of a Putative Human Holocytochromec-Type Synthetase Gene (HCCS) Isolated from the Critical Region for Microphthalmia with Linear Skin Defects (MLS). Genomics, 1996, 34, 166-172.	2.9	62
192	Mapmodulin/Leucine-rich Acidic Nuclear Protein Binds the Light Chain of Microtubule-associated Protein 1B and Modulates Neuritogenesis. Journal of Biological Chemistry, 2003, 278, 34691-34699.	3.4	62
193	An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function. Molecular Psychiatry, 2020, 25, 2534-2555.	7.9	61
194	Rett syndrome: disruption of epigenetic control of postnatal neurological functions. Human Molecular Genetics, 2015, 24, R10-R16.	2.9	60
195	Cloning and Developmental Expression Analysis of the Murine Homolog of the Spinocerebellar Ataxia Type 1 Gene (Sea1). Human Molecular Genetics, 1996, 5, 33-40.	2.9	59
196	MeCP2: only 100% will do. Nature Neuroscience, 2012, 15, 176-177.	14.8	59
197	Loss of holocytochrome c-type synthetase causes the male lethality of X-linked dominant micro-phthalmia with linear skin defects (MLS) syndrome. Human Molecular Genetics, 2002, 11, 3237-3248.	2.9	58
198	Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model. Human Molecular Genetics, 2011, 20, 2204-2212.	2.9	58

#	Article	IF	CITATIONS
199	Post-translational Control of the Temporal Dynamics of Transcription Factor Activity Regulates Neurogenesis. Cell, 2016, 164, 460-475.	28.9	58
200	Calcium Dynamics and Electrophysiological Properties of Cerebellar Purkinje Cells in SCA1 Transgenic Mice. Journal of Neurophysiology, 2001, 85, 1750-1760.	1.8	57
201	RBM17 Interacts with U2SURP and CHERP to Regulate Expression and Splicing of RNA-Processing Proteins. Cell Reports, 2018, 25, 726-736.e7.	6.4	57
202	The structural genes, MEP1A and MEP1B, for the α and β subunits of the metalloendopeptidase meprin map to human chromosomes 6p and 18q, respectively. Genomics, 1995, 25, 300-303.	2.9	56
203	In Vivo Neuronal Subtype-Specific Targets of Atoh1 (Math1) in Dorsal Spinal Cord. Journal of Neuroscience, 2011, 31, 10859-10871.	3.6	56
204	Genetic Aspects of Rett Syndrome. Journal of Child Neurology, 1988, 3, S76-S78.	1.4	55
205	Phosphorylation of ATXN1 at Ser776 in the cerebellum. Journal of Neurochemistry, 2009, 110, 675-686.	3.9	55
206	α-synuclein—a link between Parkinson and Alzheimer diseases?. Nature Genetics, 1997, 16, 325-327.	21.4	54
207	Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Human Molecular Genetics, 2003, 12, 2789-2795.	2.9	54
208	The genes for X-linked ocular albinism (OA1) and microphthalmia with linear skin defects (MLS): cloning and characterization of the critical regions. Human Molecular Genetics, 1993, 2, 947-952.	2.9	52
209	Overexpression of Methyl-CpG Binding Protein 2 Impairs T _H 1 Responses. Science Translational Medicine, 2012, 4, 163ra158.	12.4	52
210	Respiratory Network Stability and Modulatory Response to Substance P Require Nalcn. Neuron, 2017, 94, 294-303.e4.	8.1	52
211	Atoh1 Governs the Migration of Postmitotic Neurons that Shape Respiratory Effectiveness at Birth and Chemoresponsiveness in Adulthood. Neuron, 2012, 75, 799-809.	8.1	51
212	Purkinje Cell Ataxin-1 Modulates Climbing Fiber Synaptic Input in Developing and Adult Mouse Cerebellum. Journal of Neuroscience, 2013, 33, 5806-5820.	3.6	50
213	Mutations in the gene encoding methyl-CpG-binding protein 2 cause Rett syndrome. Brain and Development, 2001, 23, S147-S151.	1.1	49
214	14-3-3 Binding to Ataxin-1(ATXN1) Regulates Its Dephosphorylation at Ser-776 and Transport to the Nucleus. Journal of Biological Chemistry, 2011, 286, 34606-34616.	3.4	49
215	Gcn5 loss-of-function accelerates cerebellar and retinal degeneration in a SCA7 mouse model. Human Molecular Genetics, 2012, 21, 394-405.	2.9	49
216	A Druggable Genome Screen Identifies Modifiers of α-Synuclein Levels via a Tiered Cross-Species Validation Approach. Journal of Neuroscience, 2018, 38, 9286-9301.	3.6	49

#	Article	IF	CITATIONS
217	Loss of Ataxin-1 Potentiates Alzheimer's Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell, 2019, 178, 1159-1175.e17.	28.9	49
218	Cloning and Characterization of a Novelrho-Type GTPase-Activating Protein Gene (ARHGAP6) from the Critical Region for Microphthalmia with Linear Skin Defects. Genomics, 1997, 46, 268-277.	2.9	46
219	The role of LANP and ataxin 1 in E4Fâ€mediated transcriptional repression. EMBO Reports, 2007, 8, 671-677.	4.5	46
220	Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. Human Molecular Genetics, 2011, 20, 510-527.	2.9	45
221	Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau. ELife, 2018, 7, ·	6.0	45
222	Genetic basis of rett syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 2002, 8, 82-86.	3.6	44
223	The Effects of the Polyglutamine Repeat Protein Ataxin-1 on the UbL-UBA Protein A1Up. Journal of Biological Chemistry, 2004, 279, 42290-42301.	3.4	44
224	Neurogenetics: Advancing the "Next-Generation―of Brain Research. Neuron, 2010, 68, 165-173.	8.1	44
225	Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. ELife, 2020, 9, .	6.0	44
226	Sixty-five radiation hybrids for the short arm of human chromosome 6: Their value as a mapping panel and as a source for rapid isolation of new probes using repeat element-mediated PCR. Genomics, 1991, 9, 713-720.	2.9	43
227	Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. ELife, 2020, 9, .	6.0	42
228	Mapping of multiple subunits of the neuronal nicotinic acetylcholine receptor to chromosome 15 in man and chromosome 9 in mouse. Genomics, 1991, 9, 278-282.	2.9	40
229	Structural basis of protein complex formation and reconfiguration by polyglutamine disease protein Ataxin-1 and Capicua. Genes and Development, 2013, 27, 590-595.	5.9	40
230	Reduction of Purkinje Cell Pathology in SCA1 Transgenic Mice by p53 Deletion. Neurobiology of Disease, 2001, 8, 974-981.	4.4	39
231	Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity. ELife, 2018, 7, .	6.0	39
232	Presymptomatic training mitigates functional deficits in a mouse model of Rett syndrome. Nature, 2021, 592, 596-600.	27.8	39
233	Generation and Characterization of LANP/pp32 Null Mice. Molecular and Cellular Biology, 2004, 24, 3140-3149.	2.3	38
234	Human homologs of two testes-expressed loci on mouse chromosome 17 map to opposite arms of chromosome 6. Genomics, 1989, 5, 139-143.	2.9	37

#	Article	IF	CITATIONS
235	Brief Report: MECP2 Mutations in People Without Rett Syndrome. Journal of Autism and Developmental Disorders, 2014, 44, 703-711.	2.7	37
236	Apparent bias toward long gene misregulation in MeCP2 syndromes disappears after controlling for baseline variations. Nature Communications, 2018, 9, 3225.	12.8	37
237	CAG Repeats in SCA6. Neurology, 1997, 49, 1196-1199.	1.1	36
238	Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1511-E1519.	7.1	35
239	The role of chaperones in polyglutamine disease. Trends in Molecular Medicine, 2002, 8, 232-236.	6.7	34
240	Rett Syndrome and the Ongoing Legacy of Close Clinical Observation. Cell, 2016, 167, 293-297.	28.9	34
241	A YAC-based binning strategy facilitating the rapid assembly of cosmid contigs: 1.6 Mb of overlapping cosmids in Xp22. Human Molecular Genetics, 1994, 3, 1155-1161.	2.9	33
242	Loss of Atoh1 from neurons regulating hypoxic and hypercapnic chemoresponses causes neonatal respiratory failure in mice. ELife, 2018, 7, .	6.0	32
243	Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives. Genome Research, 2019, 29, 999-1008.	5.5	32
244	Combination of whole exome sequencing and animal modeling identifies TMPRSS9 as a candidate gene for autism spectrum disorder. Human Molecular Genetics, 2020, 29, 459-470.	2.9	32
245	Rett Syndrome: Qualitative and Quantitative Differentiation from Autism. Journal of Child Neurology, 1988, 3, S65-S67.	1.4	31
246	Linkage mapping and fluorescence in situ hybridization of TCTE1 on human chromosome 6p: Analysis of dinucleotide polymorphisms on native gels. Genomics, 1991, 10, 921-926.	2.9	31
247	Neurobiology of disease. Current Opinion in Neurobiology, 2000, 10, 655-660.	4.2	31
248	The yin and yang of MeCP2 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4577-4578.	7.1	31
249	Polyglutamine Disease Toxicity Is Regulated by Nemo-like Kinase in Spinocerebellar Ataxia Type 1. Journal of Neuroscience, 2013, 33, 9328-9336.	3.6	30
250	Physical and genetic mapping of the telomeric major histocompatibility complex region in man and relevance to the primary hemochromatosis gene (HFE). Genomics, 1992, 14, 232-240.	2.9	29
251	Rett syndrome: what do we know for sure?. Nature Neuroscience, 2009, 12, 239-240.	14.8	29
252	Identification and subclassification of new Atoh1 derived cell populations during mouse spinal cord development. Developmental Biology, 2009, 327, 339-351.	2.0	29

#	Article	IF	CITATIONS
253	Genome-wide distribution of linker histone H1.0 is independent of MeCP2. Nature Neuroscience, 2018, 21, 794-798.	14.8	29
254	Antisense oligonucleotide therapy in a humanized mouse model of <i>MECP2</i> duplication syndrome. Science Translational Medicine, 2021, 13, .	12.4	29
255	A native interactor scaffolds and stabilizes toxic ATAXIN-1 oligomers in SCA1. ELife, 2015, 4, .	6.0	29
256	Characterization of a Novel Chromo Domain Gene in Xp22.3 with Homology to Drosophila msl-3. Genomics, 1999, 59, 77-84.	2.9	28
257	Deficiency of Capicua disrupts bile acid homeostasis. Scientific Reports, 2015, 5, 8272.	3.3	28
258	Maturation of Purkinje cell firing properties relies on neurogenesis of excitatory neurons. ELife, 2021, 10, .	6.0	28
259	A cell-based screen for modulators of ataxin-1 phosphorylation. Human Molecular Genetics, 2005, 14, 1095-1105.	2.9	27
260	Reduction of protein kinase A-mediated phosphorylation of ATXN1-S776 in Purkinje cells delays onset of Ataxia in a SCA1 mouse model. Neurobiology of Disease, 2018, 116, 93-105.	4.4	27
261	Characterization and Physical Mapping in Human and Mouse of a Novel RING Finger Gene in Xp22. Genomics, 1998, 51, 251-261.	2.9	26
262	Spinocerebellar Ataxias. Neurobiology of Disease, 2000, 7, 523-527.	4.4	26
263	An Atoh1-S193A Phospho-Mutant Allele Causes Hearing Deficits and Motor Impairment. Journal of Neuroscience, 2017, 37, 8583-8594.	3.6	26
264	miR760 regulates ATXN1 levels via interaction with its 5′ untranslated region. Genes and Development, 2020, 34, 1147-1160.	5.9	26
265	An RNA interference screen identifies druggable regulators of MeCP2 stability. Science Translational Medicine, 2017, 9, .	12.4	25
266	Coexpression enrichment analysis at the single-cell level reveals convergent defects in neural progenitor cells and their cell-type transitions in neurodevelopmental disorders. Genome Research, 2020, 30, 835-848.	5.5	25
267	Partial loss of CFIm25 causes learning deficits and aberrant neuronal alternative polyadenylation. ELife, 2020, 9, .	6.0	25
268	A centromere-based genetic map of the short arm of human chromosome 6. Genomics, 1991, 9, 420-428.	2.9	23
269	Motor neuron degeneration correlates with respiratory dysfunction in SCA1. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	23
270	A kinome-wide RNAi screen identifies ERK2 as a druggable regulator of Shank3 stability. Molecular Psychiatry, 2020, 25, 2504-2516.	7.9	23

#	Article	IF	CITATIONS
271	Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice. ELife, 2014, 3, e02265.	6.0	23
272	Impaired spatial memory codes in a mouse model of Rett syndrome. ELife, 2018, 7, .	6.0	23
273	Atypical presentation and neuropathological studies in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. Annals of Neurology, 1986, 20, 367-369.	5.3	22
274	Amino Acids in a Region of Ataxin-1 Outside of the Polyglutamine Tract Influence the Course of Disease in SCA1 Transgenic Mice. NeuroMolecular Medicine, 2002, 1, 33-42.	3.4	22
275	CRISPRcloud: a secure cloud-based pipeline for CRISPR pooled screen deconvolution. Bioinformatics, 2017, 33, 2963-2965.	4.1	22
276	The distinct methylation landscape of maturing neurons and its role in Rett syndrome pathogenesis. Current Opinion in Neurobiology, 2019, 59, 180-188.	4.2	22
277	PolyA-miner: accurate assessment of differential alternative poly-adenylation from 3′Seq data using vector projections and non-negative matrix factorization. Nucleic Acids Research, 2020, 48, e69-e69.	14.5	22
278	Acute effect of glycerol on net cerebrospinal fluid production in dogs. Journal of Neurosurgery, 1985, 63, 759-762.	1.6	21
279	Pontocerebellar Hypoplasia: Review of Classification and Genetics, and Exclusion of Several Genes Known to Be Important for Cerebellar Development. Journal of Child Neurology, 2011, 26, 288-294.	1.4	20
280	Development and utilization of a somatic cell hybrid mapping panel to assign Notl linking probes to the long arm of human chromosome 6. Genomics, 1992, 12, 542-548.	2.9	19
281	Prenylcysteine carboxylmethyltransferase is essential for the earliest stages of liver development in mice. Gastroenterology, 2002, 123, 345-351.	1.3	19
282	Increased Axonal Bouton Stability during Learning in the Mouse Model of MECP2 Duplication Syndrome. ENeuro, 2018, 5, ENEURO.0056-17.2018.	1.9	19
283	Neurexophilin4 is a selectively expressed $\hat{l}\pm$ -neurexin ligand that modulates specific cerebellar synapses and motor functions. ELife, 2019, 8, .	6.0	19
284	Characterization of the Zebrafishatxn1/axhGene Family. Journal of Neurogenetics, 2009, 23, 313-323.	1.4	18
285	MeCP2 Levels Regulate the 3D Structure of Heterochromatic Foci in Mouse Neurons. Journal of Neuroscience, 2020, 40, 8746-8766.	3.6	18
286	Jak2-mediated phosphorylation of Atoh1 is critical for medulloblastoma growth. ELife, 2017, 6, .	6.0	18
287	Mouse models as a tool for discovering new neurological diseases. Neurobiology of Learning and Memory, 2019, 165, 106902.	1.9	17
288	PAK1 regulates ATXN1 levels providing an opportunity to modify its toxicity in spinocerebellar ataxia type 1. Human Molecular Genetics, 2018, 27, 2863-2873.	2.9	16

#	Article	IF	CITATIONS
289	Development of the brainstem respiratory circuit. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e366.	5.9	16
290	Ataxin-1 oligomers induce local spread of pathology and decreasing them by passive immunization slows Spinocerebellar ataxia type 1 phenotypes. ELife, 2015, 4, .	6.0	16
291	Isolation of a yeast artificial chromosome contig spanning the X chromosomal translocation breakpoint in a patient with Rett syndrome. American Journal of Medical Genetics Part A, 1993, 47, 1124-1134.	2.4	15
292	Terminal Osseous Dysplasia with Pigmentary Defects Maps to Human Chromosome Xq27.3-Xqter. American Journal of Human Genetics, 2000, 66, 1461-1464.	6.2	15
293	Identification of a novel phosphorylation site in ataxin-1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 11-18.	4.1	15
294	The Basics of Translation. Science, 2013, 339, 250-250.	12.6	15
295	Doublecortin-like Kinase 1 Regulates α-Synuclein Levels and Toxicity. Journal of Neuroscience, 2020, 40, 459-477.	3.6	15
296	Disruption of MeCP2–TCF20 complex underlies distinct neurodevelopmental disorders. Proceedings of the United States of America, 2022, 119, .	7.1	15
297	Rett syndrome: Discrimination of typical and variant forms. Brain and Development, 1987, 9, 458-461.	1.1	14
298	Mutation analysis of the M6b gene in patients with Rett syndrome. , 1998, 78, 165-168.		14
299	Candidate gene analysis in Rett syndrome and the identification of 21 SNPs in Xq. , 2000, 90, 69-71.		14
300	Genomic organization of Tropomodulins 2 and 4 and unusual intergenic and intraexonic splicing of YL-1 and Tropomodulin 4. BMC Genomics, 2001, 2, 7.	2.8	14
301	Deleting Mecp2 from the cerebellum rather than its neuronal subtypes causes a delay in motor learning in mice. ELife, 2021, 10, .	6.0	14
302	<i>Mecp2</i> Deletion from Cholinergic Neurons Selectively Impairs Recognition Memory and Disrupts Cholinergic Modulation of the Perirhinal Cortex. ENeuro, 2019, 6, ENEURO.0134-19.2019.	1.9	14
303	Loss of MeCP2 Function Across Several Neuronal Populations Impairs Breathing Response to Acute Hypoxia. Frontiers in Neurology, 2020, 11, 593554.	2.4	13
304	Pharmacometabolomic Signature of Ataxia SCA1 Mouse Model and Lithium Effects. PLoS ONE, 2013, 8, e70610.	2.5	13
305	Hsp70/Hsc70 regulates the effect phosphorylation has on stabilizing ataxin-1. Journal of Neurochemistry, 2007, 102, 2040-2048.	3.9	12
306	Nr2f1 heterozygous knockout mice recapitulate neurological phenotypes of Bosch-Boonstra-Schaaf optic atrophy syndrome and show impaired hippocampal synaptic plasticity. Human Molecular Genetics, 2020, 29, 705-715.	2.9	12

#	Article	IF	CITATIONS
307	Modulation of ATXN1 S776 phosphorylation reveals the importance of allele-specific targeting in SCA1. JCI Insight, 2021, 6, .	5.0	12
308	Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Annals of Neurology, 2000, 47, 670-679.	5.3	12
309	Excessive Formation and Stabilization of Dendritic Spine Clusters in the <i>MECP2</i> -Duplication Syndrome Mouse Model of Autism. ENeuro, 2021, 8, ENEURO.0282-20.2020.	1.9	12
310	Assignment of an Intron-Containing Human Heat-Shock Protein Gene (hsp90β, HSPCB) to Chromosome 6 near TCTE1 (6p21) and Two Intronless Pseudogenes to Chromosomes 4 and 15 by Polymerase Chain Reaction Amplification from a Panel of Hybrid Cell Lines. Genomics, 1993, 18, 452-454.	2.9	11
311	Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience, 2020, 445, 190-206.	2.3	11
312	Dual targeting of brain regionâ€specific kinases potentiates neurological rescue in Spinocerebellar ataxia type 1. EMBO Journal, 2021, 40, e106106.	7.8	11
313	Mapping of theSca1andpcdGenes on Mouse Chromosome 13 Provides Evidence That They Are Different Genes. Genomics, 1995, 29, 812-813.	2.9	10
314	Genomic structure of a human holocytochromec-type synthetase gene in Xp22.3 and mutation analysis in patients with Rett syndrome. American Journal of Medical Genetics Part A, 1998, 78, 179-181.	2.4	10
315	Pathogenesis of Polyglutamine-Induced Disease: A Model for SCA1. Molecular Genetics and Metabolism, 1999, 66, 172-178.	1.1	10
316	Huntingtin's critical cleavage. Nature Neuroscience, 2006, 9, 1088-1089.	14.8	9
317	Gene-based therapeutics for rare genetic neurodevelopmental psychiatric disorders. Molecular Therapy, 2022, 30, 2416-2428.	8.2	9
318	An easy and rapid method for the detection of chimeric yeast artificial chromosome clones. Nucleic Acids Research, 1992, 20, 1814-1814.	14.5	8
319	SILencing misbehaving proteins. Nature Genetics, 2005, 37, 1302-1303.	21.4	8
320	Recommendations by the ClinGen Rett/Angelmanâ€like expert panel for geneâ€specific variant interpretation methods. Human Mutation, 2022, 43, 1097-1113.	2.5	8
321	A weakened recurrent circuit in the hippocampus of Rett syndrome mice disrupts long-term memory representations. Neuron, 2022, 110, 1689-1699.e6.	8.1	8
322	Analysis of the genomic structure of the human glycine receptor ?2 subunit gene and exclusion of this gene as a candidate for Rett syndrome. , 1998, 78, 176-178.		7
323	The Chromatin Modifier MSK1/2 Suppresses Endocrine Cell Fates during Mouse Pancreatic Development. PLoS ONE, 2016, 11, e0166703.	2.5	7
324	Analysis of Mid1, Hccs, Arhgap6, and Msl3l1 in X-linked polydactyly (Xpl) and Patchy-fur (Paf) mutant mice. Mammalian Genome, 2001, 12, 796-798.	2.2	6

#	Article	IF	CITATIONS
325	BAC-to-BAC images of the brain. Nature, 2003, 425, 907-908.	27.8	6
326	Reduction of mutant ATXN1 rescues premature death in a conditional SCA1 mouse model. JCI Insight, 2022, 7, .	5.0	6
327	Cross-species genetic screens identify transglutaminase 5 as a regulator of polyglutamine-expanded ataxin-1. Journal of Clinical Investigation, 2022, 132, .	8.2	6
328	Introduction: Rett syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 2002, 8, 59-60.	3.6	5
329	Ataxin1L Is a Regulator of HSC Function Highlighting the Utility of Cross-Tissue Comparisons for Gene Discovery. PLoS Genetics, 2013, 9, e1003359.	3.5	5
330	The Cerebellum and the Hereditary Ataxias. , 2017, , 689-700.		5
331	Intellectual and developmental disabilities research centers: Fifty years of scientific accomplishments. Annals of Neurology, 2019, 86, 332-343.	5.3	5
332	Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease. Human Molecular Genetics, 2019, 28, 2014-2029.	2.9	5
333	Identification and characterization of conserved noncoding <i>cis</i> -regulatory elements that impact <i>Mecp2</i> expression and neurological functions. Genes and Development, 2021, 35, 489-494.	5.9	4
334	Bcll and Mspl polymorphisms at the D6S90 locus. Nucleic Acids Research, 1990, 18, 5922-5922.	14.5	3
335	The hereditary ataxias. , 2002, , 1880-1895.		3
336	Repeat after Me(CP2)!. Science, 2021, 372, 1390-1391.	12.6	3
337	Molecular Genetics and Neurobiology of Neurodegenerative and Neurodevelopmental Disorders. Pediatric Research, 1997, 41, 722-726.	2.3	3
338	Taql polymorphism at the D6S91 locus. Nucleic Acids Research, 1990, 18, 5923-5923.	14.5	2
339	Trinucleotide repeat disorders in pediatrics. Journal of Pediatrics, 1995, 7, 715-725.	1.8	2
340	Getting Back to Basics. Cell, 2006, 126, 11-15.	28.9	2
341	The Hereditary Ataxias. , 2013, , 1-32.		2
342	From Anatomy to Electrophysiology: Clinical Lasker Goes Deep. Cell, 2014, 158, 1225-1229.	28.9	2

#	Article	IF	CITATIONS
343	Deep Brain Stimulation for Parkinson Disease. JAMA Neurology, 2015, 72, 259.	9.0	2
344	Strategy to selectively remove mutant proteins could combat neurodegeneration. Nature, 2019, 575, 57-58.	27.8	2
345	Stephen T. Warren, Ph.D. (1953–2021): A remembrance. American Journal of Human Genetics, 2022, 109, 3-11.	6.2	2
346	14-3-3 binding to Ataxin-1 (ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus Journal of Biological Chemistry, 2013, 288, 6590.	3.4	1
347	Beta-Binomial Modeling of CRISPR Pooled Screen Data Identifies Target Genes with Greater Sensitivity and fewer False Negatives. , 2019, , .		1
348	Trinucleotide Repeat Disorders. , 2006, , 1114-1122.		1
349	The Cerebellum and the Hereditary Ataxias. , 2012, , 939-964.		1
350	Spinocerebellar Ataxia and Other Disorders of Trinucleotide Repeats. , 1998, , 913-920.		1
351	C. Thomas Caskey (1938–2022). Science, 2022, 375, 824-824.	12.6	1
352	Isolation, mapping, and characterization of two cDNA clones expressed in the cerebellum. Genomics, 1992, 14, 813-815.	2.9	0
353	Detection of Chimerism in YAC Clones. , 1996, 54, 115-122.		0
354	Scientific and technological synergy: Baylor College of Medicine and the Mental Retardation Research Center. International Journal of Developmental Neuroscience, 2002, 20, 467-468.	1.6	0
355	Expression profiling in Math1 null and heterozygous intestine: identification of genes involved in specification of epithelial lineages and normal embryonic development. Gastroenterology, 2003, 124, A279.	1.3	0
356	A Mixed Epigenetic and Genetic and Mixed De Novo and Inherited Model for Autism. , 2006, , 95-111.		0
357	Childhood Disorders of the Synapse: Challenges and Opportunities. Science Translational Medicine, 2012, 4, 152ps17.	12.4	0
358	Profile of Huda Zoghbi. BioTechniques, 2013, 55, 53.	1.8	0
359	Dominantly Inherited Spinocerebellar Syndromes. , 2015, , 1003-1032.		0
360	Purkinje cells and their trees. Lancet Neurology, The, 2021, 20, 706.	10.2	0

#	Article	IF	CITATIONS
361	Spinocerebellar ataxia type 1. , 2001, , 409-418.		0
362	Epigenetics of Psychiatric Diseases. , 2011, , 104-128.		0
363	Epigenetics of Psychiatric Diseases. , 2013, , 88-106.		Ο
364	Transgenic Mouse Models of CAG Trinucleotide Repeat Neurologic Diseases. , 1999, , 163-185.		0
365	Editorial overview: Neurobiology of disease. Current Opinion in Neurobiology, 2022, 72, iv-ix.	4.2	Ο
366	Pathophysiology of SCA1., 0, , 271-283.		0