Juan Su # List of Publications by Year in Descending Order Source: https://exaly.com/author-pdf/272975/juan-su-publications-by-year.pdf Version: 2024-04-20 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 199 10,443 56 97 papers citations h-index g-index 208 12,080 9.2 6.59 ext. papers ext. citations avg, IF L-index | # | Paper | IF | Citations | |-----|---|---------------------|-----------------| | 199 | Toward Hydrogen-Free and Dendrite-Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes <i>Advanced Science</i> , 2022 , e2104866 | 13.6 | 22 | | 198 | Heteroatom-Embedded Approach to Vinylene-Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. <i>Angewandte Chemie</i> , 2022 , 134, e202111627 | 3.6 | 1 | | 197 | Dendrite-free lithium anode achieved under lean-electrolyte condition through the modification of separators with F-functionalized Ti3C2 nanosheets. <i>Journal of Energy Chemistry</i> , 2022 , 66, 366-373 | 12 | 2 | | 196 | Facilitating Hot Electron Injection from Graphene to Semiconductor by Rectifying Contact for Vis-NIR-Driven H O Production <i>Small</i> , 2022 , e2200885 | 11 | 0 | | 195 | Highly Reversible Zinc Anode Enabled by a Cation-Exchange Coating with Zn-Ion Selective Channels <i>ACS Nano</i> , 2022 , | 16.7 | 4 | | 194 | Heteroatom-Embedded Approach to Vinylene-Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , | 16.4 | 9 | | 193 | Semiconductor-based nanocomposites for selective organic synthesis. <i>Nano Select</i> , 2021 , 2, 1799 | 3.1 | 0 | | 192 | Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. <i>Angewandte Chemie</i> , 2021 , 133, 13726-13732 | 3.6 | 3 | | 191 | Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13614-13620 | 16.4 | 18 | | 190 | Enhanced Electrochemical Performance of Aprotic Li-CO Batteries with a Ruthenium-Complex-Based Mobile Catalyst. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16404 | 4-16 4 0 | 8 ¹² | | 189 | Enhanced Electrochemical Performance of Aprotic Li-CO2 Batteries with a Ruthenium-Complex-Based Mobile Catalyst. <i>Angewandte Chemie</i> , 2021 , 133, 16540-16544 | 3.6 | 2 | | 188 | Electrochemical activation of C-H by electron-deficient WC nanocrystals for simultaneous alkoxylation and hydrogen evolution. <i>Nature Communications</i> , 2021 , 12, 3882 | 17.4 | 1 | | 187 | Designed electron-deficient gold nanoparticles for a room-temperature C-C coupling reaction. <i>Chemical Communications</i> , 2021 , 57, 741-744 | 5.8 | 5 | | 186 | Oxygen Vacancy Engineering of Titania-Induced by Sr Dopants for Visible-Light-Driven Hydrogen Evolution. <i>Inorganic Chemistry</i> , 2021 , 60, 32-36 | 5.1 | 2 | | 185 | Towards high performance lithium-oxygen batteries: Co3O4-NiO heterostructure induced preferential growth of ultrathin Li2O2 film. <i>Journal of Alloys and Compounds</i> , 2021 , 863, 158073 | 5.7 | O | | 184 | Chemical fixation of CO2 on nanocarbons and hybrids. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 20857- | -2 0 873 | 6 | | 183 | Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 16814-16823 | 13 | 20 | | 182 | Schottky Barrier-Induced Surface Electric Field Boosts Universal Reduction of NO in Water to Ammonia. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20711-20716 | 16.4 | 14 | |-----|--|----------------|-----| | 181 | Schottky Barrier-Induced Surface Electric Field Boosts Universal Reduction of NOxlin Water to Ammonia. <i>Angewandte Chemie</i> , 2021 , 133, 20879-20884 | 3.6 | 7 | | 180 | Heterojunction-Based Electron Donators to Stabilize and Activate Ultrafine Pt Nanoparticles for Efficient Hydrogen Atom Dissociation and Gas Evolution. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25766-25770 | 16.4 | 5 | | 179 | Thiophene derivatives as electrode materials for high-performance sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11530-11536 | 13 | 1 | | 178 | Construction of Large Non-Localized Œlectron System for Enhanced Sodium-Ion Storage. <i>Small</i> , 2021 , e2105825 | 11 | O | | 177 | Synergy of Fe-N4 and non-coordinated boron atoms for highly selective oxidation of amine into nitrile. <i>Nano Research</i> , 2020 , 13, 2079-2084 | 10 | 12 | | 176 | Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11893-11900 | 16.4 | 78 | | 175 | Boosting the electrochemical performance of LiD2 batteries with DPPH redox mediator and graphene-luteolin-protected lithium anode. <i>Energy Storage Materials</i> , 2020 , 31, 373-381 | 19.4 | 12 | | 174 | Biomimetic Design of a 3 D Transition Metal/Carbon Dyad for the One-Step Hydrodeoxygenation of Vanillin. <i>ChemSusChem</i> , 2020 , 13, 1900-1905 | 8.3 | 5 | | 173 | Sodium phthalate as an anode material for sodium ion batteries: effect of the bridging carbonyl group. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8469-8475 | 13 | 10 | | 172 | Atomically Dispersed Ni-Based Anti-Coking Catalysts for Methanol Dehydrogenation in a Fixed-Bed Reactor. <i>ACS Catalysis</i> , 2020 , 10, 12569-12574 | 13.1 | 3 | | 171 | Electrocatalyst design for aprotic LittO2 batteries. Energy and Environmental Science, 2020, 13, 4717-47. | 3 7 5.4 | 28 | | 170 | Isoelectric Si Heteroatoms as Electron Traps for N2 Fixation and Activation. <i>Advanced Functional Materials</i> , 2020 , 30, 2005779 | 15.6 | 12 | | 169 | Autoxidation of polythiophene tethered to carbon cloth boosts its electrocatalytic activity towards durable water oxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19793-19798 | 13 | 8 | | 168 | Phosphazene-derived stable and robust artificial SEI for protecting lithium anodes of Li-O batteries. <i>Chemical Communications</i> , 2020 , 56, 12566-12569 | 5.8 | 2 | | 167 | Core-shell anatase anode materials for sodium-ion batteries: the impact of oxygen vacancies and nitrogen-doped carbon coating. <i>Nanoscale</i> , 2019 , 11, 17860-17868 | 7.7 | 10 | | 166 | Electrochemical Reduction of N into NH by Donor-Acceptor Couples of Ni and Au Nanoparticles with a 67.8% Faradaic Efficiency. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14976-14980 | 16.4 | 178 | | 165 | Free-standing N,Co-codoped TiO2 nanoparticles for LiO2-based LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 23046-23054 | 13 | 12 | | 164 | Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. <i>Nature Communications</i> , 2019 , 10, 4380 | 17.4 | 117 | |-----|---|---------------------|-----| | 163 | 2D/2D Heterojunctions for Catalysis. <i>Advanced Science</i> , 2019 , 6, 1801702 | 13.6 | 115 | | 162 | MoS2 nanoflakes integrated in a 3D carbon framework for high-performance sodium-ion batteries.
Journal of Alloys and Compounds, 2019 , 797, 1126-1132 | 5.7 | 13 | | 161 | Synergy of B and Al Dopants in Mesoporous MFI Nanocrystals for Highly Selective Alcoholysis of Furfuryl Alcohol into Ethyl Levulinate. <i>Energy Technology</i> , 2019 , 7, 1900271 | 3.5 | 6 | | 160 | Photogenerated singlet oxygen over zeolite-confined carbon dots for shape selective catalysis. <i>Science China Chemistry</i> , 2019 , 62, 434-439 | 7.9 | 9 | | 159 | Oriented arrays of CoO nanoneedles for highly efficient electrocatalytic water oxidation. <i>Chemical Communications</i> , 2019 , 55, 3971-3974 | 5.8 | 13 | | 158 | Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries. <i>Nature Communications</i> , 2019 , 10, 5810 | 17.4 | 59 | | 157 | 3D ordered macroporous MoO2 attached on carbonized cloth for high performance free-standing binder-free lithiumBulfur electrodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24524-24531 | 13 | 13 | | 156 | Schottky Barrier Induced Coupled Interface of Electron-Rich N-Doped Carbon and Electron-Deficient Cu: In-Built Lewis Acid-Base Pairs for Highly Efficient CO Fixation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 38-41 | 16.4 | 72 | | 155 | Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage. <i>Dalton Transactions</i> , 2018 , 47, 4885-4892 | 4.3 | 6 | | 154 | Free-Standing Air Cathodes Based on 3D Hierarchically Porous Carbon Membranes: Kinetic Overpotential of Continuous Macropores in Li-O2 Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 6941-6945 | 3.6 | 17 | | 153 | Free-Standing Air Cathodes Based on 3D Hierarchically Porous Carbon Membranes: Kinetic Overpotential of Continuous Macropores in Li-O Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6825-6829 | 16.4 | 52 | | 152 | Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO2 nanoparticles. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4331-4336 | 13 | 20 | | 151 | Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the MottBchottky Effect for Gas-Phase Methanol Dehydrogenation. <i>Angewandte Chemie</i> , 2018 , 130, 2727-2731 | 3.6 | 14 | | 150 | Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the Mott-Schottky Effect for Gas-Phase Methanol Dehydrogenation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2697-2701 | 16.4 | 58 | | 149 | Oxygen vacancy-rich, Ru-doped In2O3 ultrathin nanosheets for efficient detection of xylene at low temperature. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 4156-4162 | 7.1 | 30 | | 148 | Transitions from a Kondo-like diamagnetic insulator into a modulated ferromagnetic metal in FeGaGe. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 327 | 3 ¹ 3278 | ,7 | | 147 | Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. <i>Nano Research</i> , 2018 , 11, 2450-2459 | 10 | 47 | ### (2018-2018) | 146 | Mono-Atomic Fe Centers in Nitrogen/Carbon Monolayers for Liquid-Phase Selective Oxidation Reaction. <i>ChemCatChem</i> , 2018 , 10, 3539-3545 | 5.2 | 9 | |-----|--|------------------|-----| | 145 | A Polyimide Nanolayer as a Metal-Free and Durable Organic Electrode Toward Highly Efficient Oxygen Evolution. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12563-12566 | 16.4 | 26 | | 144 | Germanium nanoparticles supported by 3D ordered macroporous nickel frameworks as high-performance free-standing anodes for Li-ion batteries. <i>Chemical Engineering Journal</i> , 2018 , 354, 616-622 | 14.7 | 28 | | 143 | A Polyimide Nanolayer as a Metal-Free and Durable Organic Electrode Toward Highly Efficient Oxygen Evolution. <i>Angewandte Chemie</i> , 2018 , 130, 12743-12746 | 3.6 | 9 | | 142 | Nitrogen-doped carbon nanotube sponge with embedded Fe/Fe3C nanoparticles as binder-free cathodes for high capacity lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17473-1748 | s 6 3 | 49 | | 141 | Direct reduction of oxygen gas over dendritic carbons with hierarchical porosity: beyond the diffusion limitation. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 2023-2030 | 6.8 | 1 | | 140 | Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries. <i>Small</i> , 2018 , 14, e1800078 | 11 | 73 | | 139 | Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. <i>Nature Communications</i> , 2018 , 9, 2609 | 17.4 | 244 | | 138 | Top-down fabrication of hierarchical nanocubes on nanosheets composite for high-rate lithium storage. <i>Dalton Transactions</i> , 2018 , 47, 16155-16163 | 4.3 | 3 | | 137 | Thiophene Derivative as a High Electrochemical Active Anode Material for Sodium-Ion Batteries: The Effect of Backbone Sulfur. <i>Chemistry of Materials</i> , 2018 , 30, 8426-8430 | 9.6 | 15 | | 136 | Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO octahedral dimers. <i>Nature Communications</i> , 2018 , 9, 5236 | 17.4 | 193 | | 135 | Room-Temperature Activation of Molecular Oxygen Over a Metal-Free Triazine-Decorated sp2-Carbon Framework for Green Synthesis. <i>ChemCatChem</i> , 2018 , 10, 5331-5335 | 5.2 | 2 | | 134 | Boosting Potassium Storage Capacity Based on Stress-Induced Size-Dependent Solid-Solution Behavior. <i>Advanced Energy Materials</i> , 2018 , 8, 1802175 | 21.8 | 20 | | 133 | Grouping Effect of Single Nickel N4 Sites in Nitrogen-Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. <i>Angewandte Chemie</i> , 2018 , 130, 15414-15418 | 3.6 | 3 | | 132 | Use of Nitrogen-Containing Carbon Supports To Control the Acidity of Supported Heteropolyacid Model Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 13999-14010 | 3.9 | 4 | | 131 | Grouping Effect of Single Nickel-N Sites in Nitrogen-Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15194-15198 | 16.4 | 33 | | 130 | Neuron-Inspired Design of High-Performance Electrode Materials for Sodium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 11503-11510 | 16.7 | 64 | | 129 | Two Porous Polyoxometalate-Resorcin[4]arene-Based Supramolecular Complexes: Selective Adsorption of Organic Dyes and Electrochemical Properties. <i>Crystal Growth and Design</i> , 2018 , 18, 6046-0 | 5₫ 5 3 | 27 | | 128 | Engineering the Interfaces of Superadsorbing Graphene-Based Electrodes with Gas and Electrolyte to Boost Gas Evolution and Activation Reactions. <i>ChemSusChem</i> , 2018 , 11, 2306-2309 | 8.3 | 14 | |-----|--|------|-----| | 127 | Non-Conjugated Dicarboxylate Anode Materials for Electrochemical Cells. <i>Angewandte Chemie</i> , 2018 , 130, 9003-9008 | 3.6 | 12 | | 126 | Non-Conjugated Dicarboxylate Anode Materials for Electrochemical Cells. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8865-8870 | 16.4 | 32 | | 125 | Atomic-Scale Mott-Schottky Heterojunctions of Boron Nitride Monolayer and Graphene as Metal-Free Photocatalysts for Artificial Photosynthesis. <i>Advanced Science</i> , 2018 , 5, 1800062 | 13.6 | 34 | | 124 | Carbonate decomposition: Low-overpotential Li-CO2 battery based on interlayer-confined monodisperse catalyst. <i>Energy Storage Materials</i> , 2018 , 15, 291-298 | 19.4 | 55 | | 123 | Accelerated room-temperature crystallization of ultrahigh-surface-area porous anatase titania by storing photogenerated electrons. <i>Chemical Communications</i> , 2017 , 53, 1619-1621 | 5.8 | 17 | | 122 | Mesoporous TS-1 Nanocrystals as Low Cost and High Performance Catalysts for Epoxidation of Styrene. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 577-580 | 4.9 | 6 | | 121 | Janus Co/CoP Nanoparticles as Efficient MottBchottky Electrocatalysts for Overall Water Splitting in Wide pH Range. <i>Advanced Energy Materials</i> , 2017 , 7, 1602355 | 21.8 | 370 | | 120 | Ultrathin InO Nanosheets with Uniform Mesopores for Highly Sensitive Nitric Oxide Detection. <i>ACS Applied Materials & Detection and Dete</i> | 9.5 | 80 | | 119 | Oxygen Vacancy Engineering of Co O Nanocrystals through Coupling with Metal Support for Water Oxidation. <i>ChemSusChem</i> , 2017 , 10, 2875-2879 | 8.3 | 64 | | 118 | Well-ordered mesoporous FeO/C composites as high performance anode materials for sodium-ion batteries. <i>Dalton Transactions</i> , 2017 , 46, 5025-5032 | 4.3 | 29 | | 117 | Activating Cobalt Nanoparticles via the Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. <i>Journal of the American Chemical Society</i> , 2017 , 139, 811-818 | 16.4 | 266 | | 116 | The solution-phase process of a g-CN/BiVO dyad to a large-area photoanode: interfacial synergy for highly efficient water oxidation. <i>Chemical Communications</i> , 2017 , 53, 10544-10547 | 5.8 | 15 | | 115 | Uric Acid as an Electrochemically Active Compound for Sodium-Ion Batteries: Stepwise Na-Storage Mechanisms of Econjugation and Stabilized Carbon Anion. <i>ACS Applied Materials & Compound Stabilized Carbon Anion</i> . <i>ACS Applied Materials & Compound Stabilized Carbon Anion</i> . <i>ACS Applied Materials & Compound Stabilized Carbon Anion</i> . | 9.5 | 8 | | 114 | Constructing Ohmic contact in cobalt selenide/Ti dyadic electrode: The third aspect to promote the oxygen evolution reaction. <i>Nano Energy</i> , 2017 , 39, 321-327 | 17.1 | 28 | | 113 | Synthetic porous materials applied in hydrogenation reactions. <i>Microporous and Mesoporous Materials</i> , 2017 , 237, 246-259 | 5.3 | 35 | | 112 | A Composite of Carbon-Wrapped Mo2C Nanoparticle and Carbon Nanotube Formed Directly on Ni Foam as a High-Performance Binder-Free Cathode for Li-O2 Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 8514-8520 | 15.6 | 68 | | 111 | Low-Overpotential LiD2 Batteries Based on TFSI Intercalated Colli Layered Double Oxides. <i>Advanced Functional Materials</i> , 2016 , 26, 1365-1374 | 15.6 | 58 | ### (2015-2016) | 110 | Programmable synthesis of mesoporous ZSM-5 nanocrystals as selective and stable catalysts for the methanol-to-propylene process. <i>Catalysis Science and Technology</i> , 2016 , 6, 5262-5266 | 5.5 | 18 | |-----|--|------|-----| | 109 | Trapping oxygen in hierarchically porous carbon nano-nets: graphitic nitrogen dopants boost the electrocatalytic activity. <i>RSC Advances</i> , 2016 , 6, 56765-56771 | 3.7 | 7 | | 108 | Nitrogen-doped graphene microtubes with opened inner voids: Highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction. <i>Nano Research</i> , 2016 , 9, 2606-2615 | 10 | 76 | | 107 | Encapsulating Palladium Nanoparticles Inside Mesoporous MFI Zeolite Nanocrystals for Shape-Selective Catalysis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9178-82 | 16.4 | 138 | | 106 | Enriching Co nanoparticles inside carbon nanofibers via nanoscale assembly of metal®rganic complexes for highly efficient hydrogen evolution. <i>Nano Energy</i> , 2016 , 22, 79-86 | 17.1 | 59 | | 105 | Graphene-nanosheet-wrapped LiV3O8 nanocomposites as high performance cathode materials for rechargeable lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 307, 426-434 | 8.9 | 35 | | 104 | Hydroquinone Resin Induced Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries. <i>ACS Applied Materials & Date of the Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries. ACS Applied Materials & Date of the Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries. <i>ACS Applied Materials & Date of the Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries. ACS Applied Materials & Date of the Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries. <i>ACS Applied Materials & Date of the Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries. ACS Applied Materials & Date of the Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries. <i>ACS Applied Materials & Date of the Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries. ACS Applied Materials & Date of the Carbon Nanotubes on Ni Foam As Batteries. ACS Applied Materials & Date of the Carbon Nanotubes on Ni Foam As Batteries (Nanotubes) and Date of the Carbon Nanotubes </i></i></i></i> | 9.5 | 26 | | 103 | Template-directed metal oxides for electrochemical energy storage. <i>Energy Storage Materials</i> , 2016 , 3, 1-17 | 19.4 | 43 | | 102 | Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials.
Journal of Materials Chemistry A, 2016 , 4, 32-50 | 13 | 111 | | 101 | Ultra-durable two-electrode ZnEir secondary batteries based on bifunctional titania nanocatalysts: a Co2+ dopant boosts the electrochemical activity. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7841-7847 | , 13 | 24 | | 100 | Activating Oxygen Molecules over Carbonyl-Modified Graphitic Carbon Nitride: Merging Supramolecular Oxidation with Photocatalysis in a Metal-Free Catalyst for Oxidative Coupling of Amines into Imines. <i>ChemCatChem</i> , 2016 , 8, 3441-3445 | 5.2 | 23 | | 99 | Nitrogen-doped carbon nets with micro/mesoporous structures as electrodes for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16698-16705 | 13 | 68 | | 98 | Toward Lower Overpotential through Improved Electron Transport Property: Hierarchically Porous CoN Nanorods Prepared by Nitridation for Lithium-Oxygen Batteries. <i>Nano Letters</i> , 2016 , 16, 5902-8 | 11.5 | 37 | | 97 | Activating Pd nanoparticles on solgel prepared porous g-C3N4/SiO2via enlarging the Schottky barrier for efficient dehydrogenation of formic acid. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 1124-1129 | 6.8 | 17 | | 96 | Nanoscale Kirkendall growth of silicalite-1 zeolite mesocrystals with controlled mesoporosity and size. <i>Chemical Communications</i> , 2015 , 51, 12563-6 | 5.8 | 27 | | 95 | Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution. <i>Nano Energy</i> , 2015 , 15, 335-342 | 17.1 | 76 | | 94 | General transfer hydrogenation by activating ammonia-borane over cobalt nanoparticles. <i>RSC Advances</i> , 2015 , 5, 102736-102740 | 3.7 | 30 | | 93 | Surface and interface engineering of electrode materials for lithium-ion batteries. <i>Advanced Materials</i> , 2015 , 27, 527-45 | 24 | 344 | | 92 | InnenrEktitelbild: Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces (Angew. Chem. 50/2015). <i>Angewandte Chemie</i> , 2015 , 127, 15515-15515 | 3.6 | | |----|---|--------------------|-----| | 91 | Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces. <i>Angewandte Chemie</i> , 2015 , 127, 15380-15384 | 3.6 | 13 | | 90 | Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15165-9 | 16.4 | 35 | | 89 | Formation of a built-in field at the porphyrin/ITO interface directly proven by the time-resolved photovoltage technique. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 5202-6 | 3.6 | 3 | | 88 | Converting waste paper to multifunctional graphene-decorated carbon paper: from trash to treasure. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13926-13932 | 13 | 28 | | 87 | Constructing holey graphene monoliths via supramolecular assembly: Enriching nitrogen heteroatoms up to the theoretical limit for hydrogen evolution reaction. <i>Nano Energy</i> , 2015 , 15, 567-57 | ′5 ^{17.1} | 51 | | 86 | Preparation of Porous Silicon by Sodiothermic Reduction of Zeolite and Photoactivation for Benzene Oxidation. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 1330-1333 | 2.3 | 4 | | 85 | Multifunctional Au [email[protected] Nanocatalyst for Highly Efficient Hydrolysis of Ammonia
Borane. <i>ACS Catalysis</i> , 2015 , 5, 388-392 | 13.1 | 111 | | 84 | Anchoring Cobalt Nanocrystals through the Plane of Graphene: Highly Integrated Electrocatalyst for Oxygen Reduction Reaction. <i>Chemistry of Materials</i> , 2015 , 27, 544-549 | 9.6 | 89 | | 83 | In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures. <i>Scientific Reports</i> , 2014 , 4, 4673 | 4.9 | 51 | | 82 | Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6905-9 | 16.4 | 148 | | 81 | Li4Ti5O12/TiO2 hollow spheres composed nanoflakes with preferentially exposed Li4Ti5O12 (011) facets for high-rate lithium ion batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 19791-6 | 9.5 | 58 | | 8o | Chemical "top-down" synthesis of amphiphilic superparamagnetic Fe3O4 nanobelts from exfoliated FeOCl layers. <i>Dalton Transactions</i> , 2014 , 43, 16173-7 | 4.3 | 12 | | 79 | Lithiation mechanism of hierarchical porous MoO2 nanotubes fabricated through one-step carbothermal reduction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 80-86 | 13 | 67 | | 78 | The crystallinity effect of mesocrystalline BaZrO3 hollow nanospheres on charge separation for photocatalysis. <i>Chemical Communications</i> , 2014 , 50, 3021-3 | 5.8 | 22 | | 77 | In situ growth of ultrafine tin oxide nanocrystals embedded in graphitized carbon nanosheets for use in high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6960-6965 | 13 | 12 | | 76 | Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. <i>Green Chemistry</i> , 2014 , 16, 3746-3751 | 10 | 68 | | 75 | Strongly Veined Carbon Nanoleaves as a Highly Efficient Metal-Free Electrocatalyst. <i>Angewandte Chemie</i> , 2014 , 126, 7025-7029 | 3.6 | 43 | ### (2013-2014) | 74 | Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability. <i>Advanced Materials</i> , 2014 , 26, 6145-50 | 24 | 201 | |----|--|-------------------|--------------| | 73 | Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. <i>RSC Advances</i> , 2014 , 4, 13979-13988 | 3.7 | 84 | | 72 | Supramolecular nano-assemblies with tailorable surfaces: recyclable hard templates for engineering hollow nanocatalysts. <i>Science China Materials</i> , 2014 , 57, 7-12 | 7.1 | 6 | | 71 | MOFs of Uranium and the Actinides. <i>Structure and Bonding</i> , 2014 , 265-295 | 0.9 | 67 | | 70 | Photochemically engineering the metal-semiconductor interface for room-temperature transfer hydrogenation of nitroarenes with formic acid. <i>Chemistry - A European Journal</i> , 2014 , 20, 16732-7 | 4.8 | 40 | | 69 | MoO2/Mo2C Heteronanotubes Function as High-Performance Li-Ion Battery Electrode. <i>Advanced Functional Materials</i> , 2014 , 24, 3399-3404 | 15.6 | 160 | | 68 | Bio-inspired noble metal-free reduction of nitroarenes using NiS2+x/g-C3N4. RSC Advances, 2014, 4, 60 |)8 7.3 -60 |)8 <i>17</i> | | 67 | Room-temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst. <i>Chemical Communications</i> , 2013 , 49, 8217-9 | 5.8 | 35 | | 66 | Facile preparation and cellular imaging of photoluminescent carbogenic nanoparticles derived from defoliations. <i>Chemical Research in Chinese Universities</i> , 2013 , 29, 189-192 | 2.2 | 1 | | 65 | Uniform hierarchical MoO2/carbon spheres with high cycling performance for lithium ion batteries.
Journal of Materials Chemistry A, 2013 , 1, 12038 | 13 | 54 | | 64 | Porous titania with heavily self-doped Ti3+ for specific sensing of CO at room temperature. <i>Inorganic Chemistry</i> , 2013 , 52, 5924-30 | 5.1 | 89 | | 63 | Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11822-5 | 16.4 | 180 | | 62 | Distinct effect of hierarchical structure on performance of anatase as an anode material for lithium-ion batteries. <i>RSC Advances</i> , 2013 , 3, 26052 | 3.7 | 6 | | 61 | Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. <i>Chemical Communications</i> , 2013 , 49, 7522-4 | 5.8 | 194 | | 60 | Hierarchical porous carbon spheres as an anode material for lithium ion batteries. <i>RSC Advances</i> , 2013 , 3, 10823 | 3.7 | 32 | | 59 | Synthesis and photocatalytic activity of porous anatase TiO(2) microspheres composed of {010}-faceted nanobelts. <i>Dalton Transactions</i> , 2013 , 42, 4365-8 | 4.3 | 55 | | 58 | Cerium vanadate nanoparticles as a new anode material for lithium ion batteries. <i>RSC Advances</i> , 2013 , 3, 7403 | 3.7 | 21 | | 57 | Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. <i>Chemistry - A European Journal</i> , 2013 , 19, 2866-73 | 4.8 | 124 | | 56 | A graphene-wrapped silverporous silicon composite with enhanced electrochemical performance for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13648 | 13 | 64 | |----|---|---------------------|-----| | 55 | Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage. <i>Scientific Reports</i> , 2013 , 3, 3490 | 4.9 | 45 | | 54 | Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based MottBchottky Photocatalyst. <i>Angewandte Chemie</i> , 2013 , 125, 12038-12041 | 3.6 | 54 | | 53 | Porous vanadium-doped titania with active hydrogen: a renewable reductant for chemoselective hydrogenation of nitroarenes under ambient conditions. <i>Chemical Communications</i> , 2012 , 48, 9032-4 | 5.8 | 28 | | 52 | Mesoporous titania rods as an anode material for high performance lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 214, 298-302 | 8.9 | 46 | | 51 | Single-site photocatalysts with a porous structure. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2012 , 468, 2099-2112 | 2.4 | 16 | | 50 | A precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties. <i>Dalton Transactions</i> , 2012 , 41, 9773-80 | 4.3 | 43 | | 49 | Synergistic Effect on the Photoactivation of the Methane C?H Bond over Ga3+-Modified ETS-10. <i>Angewandte Chemie</i> , 2012 , 124, 4780-4784 | 3.6 | 14 | | 48 | A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. <i>ChemSusChem</i> , 2012 , 5, 642-6 | 8.3 | 51 | | 47 | Light-Driven Preparation, Microstructure, and Visible-Light Photocatalytic Property of Porous Carbon-Doped TiO2. <i>International Journal of Photoenergy</i> , 2012 , 2012, 1-9 | 2.1 | 15 | | 46 | Experimental Validation of the Importance of Thermally Stable Bulk Reduction States in TiO2for Gas Sensor Applications. <i>Acta Chimica Sinica</i> , 2012 , 70, 1477 | 3.3 | 6 | | 45 | Carbon-Coated V2O5 Nanocrystals as High Performance Cathode Material for Lithium Ion Batteries. <i>Chemistry of Materials</i> , 2011 , 23, 5290-5292 | 9.6 | 213 | | 44 | Macroporous V2O5 B iVO4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8064-8071 | 3.8 | 228 | | 43 | Light-driven transformation of ZnS-cyclohexylamine nanocomposite into zinc hydroxysulfate: a photochemical route to inorganic nanosheets. <i>Inorganic Chemistry</i> , 2011 , 50, 9106-13 | 5.1 | 17 | | 42 | Direct conversion of urea into graphitic carbon nitride over mesoporous TiO2 spheres under mild condition. <i>Chemical Communications</i> , 2011 , 47, 1066-8 | 5.8 | 140 | | 41 | Extended structures and physicochemical properties of uranyl-organic compounds. <i>Accounts of Chemical Research</i> , 2011 , 44, 531-40 | 24.3 | 342 | | 40 | Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. <i>Journal of the American Chemical Society</i> , 2011 , 133, 807 | 74 ¹ 6·4 | 505 | | 39 | Efficient Sunlight-Driven Dehydrogenative Coupling of Methane to Ethane over a Zn+-Modified Zeolite. <i>Angewandte Chemie</i> , 2011 , 123, 8449-8453 | 3.6 | 40 | | 38 | Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn(+)-modified zeolite. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8299-303 | 16.4 | 139 | |----|--|------------------|-----| | 37 | Light-induced formation of porous TiO2 with superior electron-storing capacity. <i>Chemical Communications</i> , 2010 , 46, 2112-4 | 5.8 | 45 | | 36 | Sensor material based on occluded trisulfur anionic radicals for convenient detection of trace amounts of water molecules. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3307 | | 12 | | 35 | Synthesis and Characterization of Ethylenediammonium Molybdenum Thiocomplex [H3NCH2CH2NH3][Mo3S13]. <i>Chinese Journal of Chemistry</i> , 2010 , 19, 681-688 | 4.9 | 3 | | 34 | Synthesis and Structural Characterization of Two Molybdenumphosphate Cluster Compounds: (C14N14H63) Na (H2Mo6P4O31)2 🛮 SH2O and (C14N14H63) Na (H2Mo6P4O31)2 🗘 SH2O. <i>Chinese Journal of Chemistry</i> , 2010 , 20, 858-864 | 4.9 | 1 | | 33 | Synthesis, structure and photoluminescence of two zinc carboxylate polymers with different coordination architectures. <i>Chinese Journal of Chemistry</i> , 2010 , 21, 1305-1308 | 4.9 | 9 | | 32 | Formation of nanographite using GaPO4-LTA as template. Chinese Journal of Chemistry, 2010, 22, 1399 |)-1 <u>4</u> 192 | | | 31 | Construction of Three-Dimensional Uranyl Drganic Frameworks with Benzenetricarboxylate Ligands. European Journal of Inorganic Chemistry, 2010 , 2010, 3780-3788 | 2.3 | 70 | | 30 | Synthesis, structure characterization and photocatalytic properties of two new uranyl naphthalene-dicarboxylate coordination polymer compounds. <i>Inorganic Chemistry Communication</i> , 2010 , 13, 1542-1547 | 3.1 | 54 | | 29 | Effect of Surface Cations on Photoelectric Conversion Property of Nanosized Zirconia. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9114-9120 | 3.8 | 21 | | 28 | Preparation, structures, and photocatalytic properties of three new uranyl-organic assembly compounds. <i>Inorganic Chemistry</i> , 2008 , 47, 4844-53 | 5.1 | 205 | | 27 | Synthesis, structures and photoluminescence of two Er(III) coordination polymers. <i>Journal of Coordination Chemistry</i> , 2008 , 61, 945-955 | 1.6 | 12 | | 26 | Synthesis of uranium oxide nanoparticles and their catalytic performance for benzyl alcohol conversion to benzaldehyde. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1146 | | 57 | | 25 | Heterometal alkoxides as precursors for the preparation of porous Fe- and Mn-TiO2 photocatalysts with high efficiencies. <i>Chemistry - A European Journal</i> , 2008 , 14, 11123-31 | 4.8 | 50 | | 24 | Fabrication and Growth Mechanism of Selenium and Tellurium Nanobelts through a Vacuum Vapor Deposition Route. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12926-12932 | 3.8 | 51 | | 23 | Formation of Single-Crystalline CuS Nanoplates Vertically Standing on Flat Substrate. <i>Crystal Growth and Design</i> , 2007 , 7, 2265-2267 | 3.5 | 63 | | 22 | PhenoxymethylpenicillinIntercalated hydrotalcite as a bacteria inhibitor. <i>Journal of Chemical Technology and Biotechnology</i> , 2006 , 81, 89-93 | 3.5 | 18 | | 21 | Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres.
Journal of the American Chemical Society, 2006 , 128, 8382-3 | 16.4 | 136 | | 20 | Uranyl pyridine-dicarboxylate compounds with clustered water molecules. <i>Inorganic Chemistry Communication</i> , 2006 , 9, 595-598 | 3.1 | 65 | |----|--|-------------------|-----| | 19 | Syntheses and photoluminescent properties of two uranyl-containing compounds with extended structures. <i>Polyhedron</i> , 2006 , 25, 1359-1366 | 2.7 | 97 | | 18 | Controlled growth and photocatalytic properties of CdS nanocrystals implanted in layered metal hydroxide matrixes. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 21602-7 | 3.4 | 52 | | 17 | Water-insoluble Ag-U-organic assemblies with photocatalytic activity. <i>Chemistry - A European Journal</i> , 2005 , 11, 2642-50 | 4.8 | 236 | | 16 | Eu3+ and Lysine Co-intercalated 也irconium Phosphate and Its Catalytic Activity for Copolymerization of Propylene Oxide and CO2. <i>Catalysis Letters</i> , 2004 , 94, 95-102 | 2.8 | 7 | | 15 | Polyether-grafted SnO2 nanoparticles designed for solid polymer electrolytes with long-term stability. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2775 | | 27 | | 14 | Synthesis, structure, and photoelectronic effects of a uranium-zinc-organic coordination polymer containing infinite metal oxide sheets. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9266-7 | 16.4 | 294 | | 13 | Photoluminescent and photovoltaic properties observed in a zinc borate Zn2(OH)BO3. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2227-2233 | | 43 | | 12 | Controlled growth of Sb2O5 nanoparticles and their use as polymer electrolyte fillers. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1994-1998 | | 20 | | 11 | Assembly of a manganese(II) pyridine-3,4-dicarboxylate polymeric network based on infinite MnDC chains. <i>Dalton Transactions</i> , 2003 , 28-30 | 4.3 | 62 | | 10 | A uraniumdincorganic molecular compound containing planar tetranuclear uranyl units. <i>Dalton Transactions</i> , 2003 , 4219-4220 | 4.3 | 47 | | 9 | {M(C5H4N)CH(OH)PO3}(H2O) (M = Mn, Fe, Co): layered compounds based on [hydroxy(4-pyridyl)methyl]phosphonate. <i>Dalton Transactions</i> , 2003 , 953-956 | 4.3 | 14 | | 8 | Synthesis and X-ray crystal structures of two new alkaline-earth metal borates: SrBO2(OH) and Ba3B6O9(OH)6. <i>Dalton Transactions RSC</i> , 2002 , 2031-2035 | | 28 | | 7 | Hydrothermal synthesis and photoluminesent properties of Sb3+-doped and (Sb3+,Mn2+)-co-doped calcium hydroxyapatite. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3761-3765 | | 28 | | 6 | Synthesis and structural characterisation of a new layered aluminophosphate [C3H12N2][Al2P2O8(OH)2][H2O. <i>Dalton Transactions RSC</i> , 2000 , 1981-1984 | | 15 | | 5 | The first organo-templated cobalt phosphate with a zeolite topology. <i>Inorganic Chemistry</i> , 2000 , 39, 14 | 7 6. 9 | 57 | | 4 | Mixed-bonded open-framework aluminophosphates and related layered materials. <i>Topics in Catalysis</i> , 1999 , 9, 93-103 | 2.3 | 29 | | 3 | Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. <i>Angewandte Chemie</i> , | 3.6 | 1 | #### LIST OF PUBLICATIONS Accelerating the Activation of NO x lbn Ru Nanoparticles for Ammonia Production by Tuning Their Electron Deficiency. CCS Chemistry,1-8 A Polyimide-Based Photocatalyst for Continuous Hydrogen Peroxide Production Using Air and Water under Solar Light. CCS Chemistry,1-9 7.2 O