Jiang Nan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/272952/publications.pdf

Version: 2024-02-01

840776 1199594 12 434 11 12 citations h-index g-index papers 12 12 12 331 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Highly Stereoselective Synthesis of Imineâ€Containing Dibenzo[<i>b</i> , <i>d</i>)azepines by a Palladium(II)â€Catalyzed [5+2] Oxidative Annulation of <i>o</i> â€Arylanilines with Alkynes. Angewandte Chemie - International Edition, 2015, 54, 15385-15389.	13.8	98
2	Ru ^{II} -Catalyzed/NH ₂ -Assisted Selective Alkenyl Câ€"H [5 + 1] Annulation of Alkenylanilines with Sulfoxonium Ylides to Quinolines. Organic Letters, 2019, 21, 4812-4815.	4.6	90
3	Rh $<$ sup $>$ III $<$ sup $>$ -Catalyzed formal [5 + 1] cyclization of 2-pyrrolyl/indolylanilines using vinylene carbonate as a C1 synthon. Organic Chemistry Frontiers, 2021, 8, 1764-1769.	4.5	54
4	Rhodium-Catalyzed Dehydrogenative Annulation of <i>N</i> -Arylmethanimines with Vinylene Carbonate for Synthesizing Quinolines. Organic Letters, 2021, 23, 8527-8532.	4.6	38
5	Metal-Free Synthesis of 2-Fluoroalkylated Quinolines Using Polyfluoroalkanoic Acids as Direct Fluorine Sources. Organic Letters, 2019, 21, 1984-1988.	4.6	28
6	Metal-Free Synthesis of 2-Substituted Quinolines via High Chemoselective Domino Condensation/Aza-Prins Cyclization/Retro-Aldol between 2-Alkenylanilines with \hat{l}^2 -Ketoesters. Journal of Organic Chemistry, 2020, 85, 14042-14054.	3.2	28
7	Rhodium-Catalyzed C–H Annulation of Free Anilines with Vinylene Carbonate as a Bifunctional Synthon. Organic Letters, 2021, 23, 8910-8915.	4.6	27
8	Metal-free tandem carbene N–H insertions and C–C bond cleavages. Chemical Science, 2021, 12, 803-811.	7.4	21
9	Bifunctional acidic ionic liquid-catalyzed decarboxylative cascade synthesis of quinoxalines in water under ambient conditions. Organic Chemistry Frontiers, 2021, 8, 5858-5865.	4.5	17
10	Cull-Catalyzed Coupling with Two Ynone Units by Selective Triple and Sigma C–C and C–H Bond Cleavages. Organic Letters, 2021, 23, 1928-1933.	4.6	12
11	Metal-Free C–H [5 + 1] Carbonylation of 2-Alkenyl/Pyrrolylanilines Using Dioxazolones as Carbonylating Reagents. Organic Letters, 2021, 23, 3761-3766.	4.6	12
12	Zinc-catalyzed Câ€"H alkenylation of quinoline <i>N</i> -oxides with ynones: a new strategy towards quinoline-enol scaffolds. Chemical Communications, 2021, 57, 4930-4933.	4.1	9