Luca D Bertzbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2729303/publications.pdf Version: 2024-02-01

LICA D REDTZRACH

#	Article	IF	CITATIONS
1	A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell, 2020, 183, 1058-1069.e19.	28.9	305
2	Age-Dependent Progression of SARS-CoV-2 Infection in Syrian Hamsters. Viruses, 2020, 12, 779.	3.3	192
3	The Roborovski Dwarf Hamster Is A Highly Susceptible Model for a Rapid and Fatal Course of SARS-CoV-2 Infection. Cell Reports, 2020, 33, 108488.	6.4	76
4	SARSâ€CoVâ€2 infection of Chinese hamsters (<i>Cricetulus griseus</i>) reproduces COVIDâ€19 pneumonia in a wellâ€established small animal model. Transboundary and Emerging Diseases, 2021, 68, 1075-1079.	3.0	64
5	Standardization of Reporting Criteria for Lung Pathology in SARS-CoV-2–infected Hamsters: What Matters?. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 856-859.	2.9	62
6	Latest Insights into Marek's Disease Virus Pathogenesis and Tumorigenesis. Cancers, 2020, 12, 647.	3.7	54
7	Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. Cell Reports, 2021, 36, 109493.	6.4	46
8	Marek's Disease Virus Infection of Natural Killer Cells. Microorganisms, 2019, 7, 588.	3.6	34
9	Unraveling the role of B cells in the pathogenesis of an oncogenic avian herpesvirus. Proceedings of the United States of America, 2018, 115, 11603-11607.	7.1	32
10	The Transcriptional Landscape of Marek's Disease Virus in Primary Chicken B Cells Reveals Novel Splice Variants and Genes. Viruses, 2019, 11, 264.	3.3	29
11	Artesunate-derived monomeric, dimeric and trimeric experimental drugs – Their unique mechanistic basis and pronounced antiherpesviral activity. Antiviral Research, 2018, 152, 104-110.	4.1	26
12	In vivo proof-of-concept for two experimental antiviral drugs, both directed to cellular targets, using a murine cytomegalovirus model. Antiviral Research, 2019, 161, 63-69.	4.1	26
13	A Common Live-Attenuated Avian Herpesvirus Vaccine Expresses a Very Potent Oncogene. MSphere, 2019, 4, .	2.9	24
14	Combinatorial Drug Treatments Reveal Promising Anticytomegaloviral Profiles for Clinically Relevant Pharmaceutical Kinase Inhibitors (PKIs). International Journal of Molecular Sciences, 2021, 22, 575.	4.1	22
15	Distinct polymorphisms in a single herpesvirus gene are capable of enhancing virulence and mediating vaccinal resistance. PLoS Pathogens, 2020, 16, e1009104.	4.7	20
16	Viral Factors Involved in Marek's Disease Virus (MDV) Pathogenesis. Current Clinical Microbiology Reports, 2018, 5, 238-244.	3.4	19
17	Acquiring Resistance Against a Retroviral Infection via CRISPR/Cas9 Targeted Genome Editing in a Commercial Chicken Line. Frontiers in Genome Editing, 2020, 2, 3.	5.2	19
18	IFNα and IFNγ Impede Marek's Disease Progression. Viruses, 2019, 11, 1103.	3.3	16

LUCA D BERTZBACH

#	Article	IF	CITATIONS
19	Induction of DNA Damages upon Marek's Disease Virus Infection: Implication in Viral Replication and Pathogenesis. Journal of Virology, 2017, 91, .	3.4	15
20	Abrogation of Marek's disease virus replication using CRISPR/Cas9. Scientific Reports, 2020, 10, 10919.	3.3	15
21	The dominantly expressed class II molecule from a resistant MHC haplotype presents only a few Marek's disease virus peptides by using an unprecedented binding motif. PLoS Biology, 2021, 19, e3001057.	5.6	14
22	Artesunate derivative TF27 inhibits replication and pathogenesis of an oncogenic avian alphaherpesvirus. Antiviral Research, 2019, 171, 104606.	4.1	12
23	The trimeric artesunate derivative TF27 exerts strong anti-cytomegaloviral efficacy: Focus on prophylactic efficacy and oral treatment of immunocompetent mice. Antiviral Research, 2020, 178, 104788.	4.1	12
24	Animal Models in Human Adenovirus Research. Biology, 2021, 10, 1253.	2.8	12
25	Imaging Mass Spectrometry and Proteome Analysis of Marek's Disease Virus-Induced Tumors. MSphere, 2019, 4, .	2.9	11
26	Marek's Disease Virus Virulence Genes Encode Circular RNAs. Journal of Virology, 2022, 96, e0032122.	3.4	11
27	The Role of Marek's Disease Virus UL12 and UL29 in DNA Recombination and the Virus Lifecycle. Viruses, 2019, 11, 111.	3.3	10
28	Marek's Disease Virus Requires Both Copies of the Inverted Repeat Regions for Efficient In Vivo Replication and Pathogenesis. Journal of Virology, 2021, 95, .	3.4	10
29	A Genetically Engineered Commercial Chicken Line Is Resistant to Highly Pathogenic Avian Leukosis Virus Subgroup J. Microorganisms, 2021, 9, 1066.	3.6	10
30	Applications of mass spectrometry imaging in virus research. Advances in Virus Research, 2021, 109, 31-62.	2.1	9
31	Mimicking the passage of avian influenza viruses through the gastrointestinal tract of chickens. Veterinary Microbiology, 2019, 239, 108462.	1.9	8
32	Marek's disease virus prolongs survival of primary chicken B-cells by inducing a senescence-like phenotype. PLoS Pathogens, 2021, 17, e1010006.	4.7	6
33	E1B-55K Is a Phosphorylation-Dependent Transcriptional and Posttranscriptional Regulator of Viral Gene Expression in Human Adenovirus C5 Infection. Journal of Virology, 2022, 96, jvi0206221.	3.4	6
34	Protein–Protein Interactions Facilitate E4orf6-Dependent Regulation of E1B-55K SUMOylation in HAdV-C5 Infection. Viruses, 2022, 14, 463.	3.3	6
35	A Cell Culture System to Investigate Marek's Disease Virus Integration into Host Chromosomes. Microorganisms, 2021, 9, 2489.	3.6	5
36	A Single Amino Acid Switch in the Adenoviral DNA Binding Protein Abrogates Replication Center Formation and Productive Viral Infection. MBio, 2022, 13, e0014422.	4.1	5

LUCA D BERTZBACH

#	Article	lF	CITATIONS
37	Differential Regulation of Cellular FAM111B by Human Adenovirus C Type 5 E1 Oncogenes. Viruses, 2021, 13, 1015.	3.3	4
38	The Marek's Disease Virus Unique Gene MDV082 Is Dispensable for Virus Replication but Contributes to a Rapid Disease Onset. Journal of Virology, 2021, 95, e0013121.	3.4	3
39	A Sars-Cov-2 Neutralizing Antibody Protects from Lung Pathology in a Covid-19 Hamster Model. SSRN Electronic Journal, 0, , .	0.4	3
40	Conserved E1B-55K SUMOylation in Different Human Adenovirus Species Is a Potent Regulator of Intracellular Localization. Journal of Virology, 2022, 96, JVI0083821.	3.4	3
41	The Diverse Major Histocompatibility Complex Haplotypes of a Common Commercial Chicken Line and Their Effect on Marek's Disease Virus Pathogenesis and Tumorigenesis. Frontiers in Immunology, 2022, 13, .	4.8	3
42	Lectin-Mediated Bacterial Modulation by the Intestinal Nematode Ascaris suum. International Journal of Molecular Sciences, 2021, 22, 8739.	4.1	2
43	Development of Safe and Highly Protective Live-Attenuated SARS-CoV-2 Vaccine Candidates by Genome Recoding. SSRN Electronic Journal, 0, , .	0.4	1
44	Characterization of a Novel Viral Interleukin 8 (vIL-8) Splice Variant Encoded by Marek's Disease Virus. Microorganisms, 2021, 9, 1475.	3.6	1
45	The importance of veterinary specialized generalists in biomedical research. Research in Veterinary Science, 2020, 129, 185-186.	1.9	Ο
46	The Roborovski Dwarf Hamster – A Highly Susceptible Model for a Rapid and Fatal Course of SARS-CoV-2 Infection. SSRN Electronic Journal, 0, , .	0.4	0
47	Impact Factor /= Impact: Lessons Learned from Research Evaluation. , 2020, , .		0
48	Title is missing!. , 2020, 16, e1009104.		0
49	Title is missing!. , 2020, 16, e1009104.		0
50	Title is missing!. , 2020, 16, e1009104.		0
51	Title is missing!. , 2020, 16, e1009104.		0
52	Title is missing!. , 2020, 16, e1009104.		0
53	Title is missing!. , 2020, 16, e1009104.		0