List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2728901/publications.pdf Version: 2024-02-01

	31902	31759
11,454	53	101
citations	h-index	g-index
153	153	6687
docs citations	times ranked	citing authors
	11,454 citations 153 docs citations	11,45453citationsh-index153153docs citations153times ranked

DETED | MACKENIZIE

#	Article	IF	CITATIONS
1	The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics and Genomics, 1997, 7, 255-269.	5.7	1,055
2	Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenetics and Genomics, 2005, 15, 677-685.	0.7	708
3	The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. International Journal of Biochemistry and Cell Biology, 2013, 45, 1121-1132.	1.2	540
4	STRUCTURAL AND FUNCTIONAL STUDIES OF UDP-GLUCURONOSYLTRANSFERASES*. Drug Metabolism Reviews, 1999, 31, 817-899.	1.5	448
5	Drug glucuronidation in humans. , 1991, 51, 347-369.		317
6	HUMAN UDP-GLUCURONOSYLTRANSFERASES: ISOFORM SELECTIVITY AND KINETICS OF 4-METHYLUMBELLIFERONE AND 1-NAPHTHOL GLUCURONIDATION, EFFECTS OF ORGANIC SOLVENTS, AND INHIBITION BY DICLOFENAC AND PROBENECID. Drug Metabolism and Disposition, 2004, 32, 413-423.	1.7	311
7	The UDP Glucuronosyltransferase Gene Super family: Suggested Nomenclature Based on Evolutionary Divergence. DNA and Cell Biology, 1991, 10, 487-494.	0.9	267
8	GLUCURONIDATION AND THE UDP-GLUCURONOSYLTRANSFERASES IN HEALTH AND DISEASE. Drug Metabolism and Disposition, 2004, 32, 281-290.	1.7	224
9	SELECTIVITY OF SUBSTRATE (TRIFLUOPERAZINE) AND INHIBITOR (AMITRIPTYLINE, ANDROSTERONE,) Tj ETQq1 1 FOR HUMAN UDP-GLUCURONOSYLTRANSFERASES. Drug Metabolism and Disposition, 2006, 34, 449-456.	. 0.784314 1.7	rgBT /Over 217
10	STRUCTURE AND FUNCTION OF URIDINE DIPHOSPHATE GLUCURONOSYLTRANSFERASES. Clinical and Experimental Pharmacology and Physiology, 1997, 24, 907-915.	0.9	216
11	In vitro–in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: Pitfalls and promises. Biochemical Pharmacology, 2006, 71, 1531-1539.	2.0	212
12	PREDICTINGHUMANDRUGGLUCURONIDATIONPARAMETERS: Application of In Vitro and In Silico Modeling Approaches. Annual Review of Pharmacology and Toxicology, 2004, 44, 1-25.	4.2	203
13	The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and <i>in vitro–in vivo</i> extrapolation of drug clearance and drug-drug interaction potential. Drug Metabolism	1.5	202
14	ISOFORM SELECTIVITY AND KINETICS OF MORPHINE 3- AND 6-GLUCURONIDATION BY HUMAN UDP-GLUCURONOSYLTRANSFERASES: EVIDENCE FOR ATYPICAL GLUCURONIDATION KINETICS BY UGT2B7. Drug Metabolism and Disposition, 2003, 31, 1086-1089.	1.7	193
15	Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9. Biochemical and Biophysical Research Communications, 1991, 175, 1112-1118.	1.0	187
16	IN VITRO CHARACTERIZATION OF LAMOTRIGINEN2-GLUCURONIDATION AND THE LAMOTRIGINE-VALPROIC ACID INTERACTION. Drug Metabolism and Disposition, 2006, 34, 1055-1062.	1.7	186
17	The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiological Reviews, 2019, 99, 1153-1222.	13.1	185
18	Genetic polymorphisms of UDP-glucuronosyltransferases and their functional significance. Toxicology, 2002, 181-182, 453-456.	2.0	176

#	Article	IF	CITATIONS
19	Quantitative prediction ofin vivoinhibitory interactions involving glucuronidated drugs fromin vitrodata: the effect of fluconazole on zidovudine glucuronidation. British Journal of Clinical Pharmacology, 2006, 61, 427-439.	1.1	154
20	HUMAN PXR VARIANTS AND THEIR DIFFERENTIAL EFFECTS ON THE REGULATION OF HUMAN UDP-GLUCURONOSYLTRANSFERASE GENE EXPRESSION. Drug Metabolism and Disposition, 2004, 32, 340-347.	1.7	149
21	Binding of Inhibitory Fatty Acids Is Responsible for the Enhancement of UDP-Glucuronosyltransferase 2B7 Activity by Albumin: Implications for in Vitro-in Vivo Extrapolation. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 137-147.	1.3	148
22	The "Albumin Effect―and Drug Glucuronidation: Bovine Serum Albumin and Fatty Acid-Free Human Serum Albumin Enhance the Glucuronidation of UDP-Glucuronosyltransferase (UGT) 1A9 Substrates but Not UGT1A1 and UGT1A6 Activities. Drug Metabolism and Disposition, 2008, 36, 1056-1062.	1.7	147
23	Differential glucuronidation of bile acids, androgens and estrogens by human UGT1A3 and 2B7. Journal of Steroid Biochemistry and Molecular Biology, 1999, 70, 101-108.	1.2	125
24	Regulation of UDP glucuronosyltransferases in the gastrointestinal tract. Toxicology and Applied Pharmacology, 2004, 199, 354-363.	1.3	107
25	Pharmacogenomics of Human UDP-Glucuronosyltransferases and Irinotecan Toxicity. Molecular Pharmacology, 2002, 62, 446-450.	1.0	106
26	UDP-Glucuronosyltransferase, the Role of the Amino Terminus in Dimerization. Journal of Biological Chemistry, 1997, 272, 26913-26917.	1.6	104
27	The Configuration of the 17-Hydroxy Group Variably Influences the Glucuronidation of β-Estradiol and Epiestradiol by Human UDP-Glucuronosyltransferases. Drug Metabolism and Disposition, 2008, 36, 2307-2315.	1.7	104
28	The glycosidation of xenobiotics and endogenous compounds: Versatility and redundancy in the UDP glycosyltransferase superfamily. , 2012, 134, 200-218.		104
29	Characterization of Two UDP Glucuronosyltransferases That Are Predominantly Expressed in Human Colon. Biochemical and Biophysical Research Communications, 1998, 247, 704-709.	1.0	101
30	4-Hydroxyretinoic Acid, a Novel Substrate for Human Liver Microsomal UDP-glucuronosyltransferase(s) and Recombinant UGT2B7. Journal of Biological Chemistry, 2000, 275, 6908-6914.	1.6	99
31	Polymorphisms in UDP Glucuronosyltransferase Genes: Functional Consequences and Clinical Relevance. Clinical Chemistry and Laboratory Medicine, 2000, 38, 889-92.	1.4	97
32	S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen. British Journal of Clinical Pharmacology, 2005, 60, 423-433.	1.1	91
33	Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metabolism Reviews, 2014, 46, 421-458.	1.5	90
34	Influence of mutations associated with Gilbert and Crigler–Najjar type II syndromes on the glucuronidation kinetics of bilirubin and other UDP-glucuronosyltransferase 1A substrates. Pharmacogenetics and Genomics, 2007, 17, 1017-1029.	0.7	86
35	Identification of UDP Glycosyltransferase 3A1 as a UDP N-Acetylglucosaminyltransferase. Journal of Biological Chemistry, 2008, 283, 36205-36210.	1.6	81
36	lsolation and characterization of full-length mouse cDNA and genomic clones of 3-methylcholanthrene-inducible cytochrome P1-450 and P3-450. Gene, 1984, 29, 281-292.	1.0	77

#	Article	IF	CITATIONS
37	Expression of androgen receptor splice variants in clinical breast cancers. Oncotarget, 2015, 6, 44728-44744.	0.8	77
38	Modulation of UDP-Glucuronosyltransferase Function by Cytochrome P450: Evidence for the Alteration of UGT2B7-Catalyzed Glucuronidation of Morphine by CYP3A4. Molecular Pharmacology, 2005, 67, 665-672.	1.0	76
39	The "Albumin Effect―and in Vitro-in Vivo Extrapolation: Sequestration of Long-Chain Unsaturated Fatty Acids Enhances Phenytoin Hydroxylation by Human Liver Microsomal and Recombinant Cytochrome P450 2C9. Drug Metabolism and Disposition, 2008, 36, 870-877.	1.7	74
40	A sensitive kinetic assay for UDPGlucuronosyltransferase using l-naphthol as substrate. Analytical Biochemistry, 1980, 109, 362-368.	1.1	73
41	Glucuronidation of Catechol Estrogens by Expressed Human UDP-Glucuronosyltransferases (UGTs) 1A1, 1A3, and 2B7. Toxicological Sciences, 1998, 45, 52-57.	1.4	71
42	Coordinate Regulation of the Human UDP-Glucuronosyltransferase 1A8, 1A9, and 1A10 Genes by Hepatocyte Nuclear Factor 11± and the Caudal-Related Homeodomain Protein 2. Molecular Pharmacology, 2004, 65, 953-963.	1.0	70
43	Identification of Uridine Diphosphate Glucuronosyltransferases Involved in the Metabolism and Clearance of Mycophenolic Acid. Therapeutic Drug Monitoring, 2000, 22, 10-13.	1.0	70
44	Glucuronidation of Catechol Estrogens by Expressed Human UDP-Glucuronosyltransferases (UGTs) 1A1, 1A3, and 2B7,. Toxicological Sciences, 1998, 45, 52-57.	1.4	69
45	Plasma extracellular nanovesicle (exosome)â€derived biomarkers for drug metabolism pathways: a novel approach to characterize variability in drug exposure. British Journal of Clinical Pharmacology, 2019, 85, 216-226.	1.1	69
46	The Novel UDP Glycosyltransferase 3A2: Cloning, Catalytic Properties, and Tissue Distribution. Molecular Pharmacology, 2011, 79, 472-478.	1.0	67
47	The Regio- and Stereo-Selectivity of C19 and C21 Hydroxysteroid Glucuronidation by UGT2B7 and UGT2B11. Archives of Biochemistry and Biophysics, 1997, 341, 207-211.	1.4	65
48	Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia. Biochemical Pharmacology, 2017, 129, 85-95.	2.0	64
49	The Human UDP Glucuronosyltransferase, UGT1A10, Glucuronidates Mycophenolic Acid. Biochemical and Biophysical Research Communications, 1997, 238, 775-778.	1.0	62
50	Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metabolism Reviews, 2016, 48, 47-69.	1.5	62
51	Human UDP-Glucuronosyltransferase 1A5: Identification, Expression, and Activity. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1143-1149.	1.3	61
52	INHIBITION OF UDP-GLUCURONOSYLTRANSFERASE 2B7-CATALYZED MORPHINE GLUCURONIDATION BY KETOCONAZOLE: DUAL MECHANISMS INVOLVING A NOVEL NONCOMPETITIVE MODE. Drug Metabolism and Disposition, 2006, 34, 1277-1282.	1.7	61
53	Interactions with other human UDP-glucuronosyltransferases attenuate the consequences of the Y485D mutation on the activity and substrate affinity of UGT1A6. Pharmacogenetics and Genomics, 2007, 17, 115-126.	0.7	61
54	The regulation of UDP-glucuronosyltransferase genes by tissue-specific and ligand-activated transcription factors. Drug Metabolism Reviews, 2010, 42, 99-109.	1.5	60

#	Article	IF	CITATIONS
55	Identification of Androgen Receptor Splice Variant Transcripts in Breast Cancer Cell Lines and Human Tissues. Hormones and Cancer, 2014, 5, 61-71.	4.9	60
56	Kinetic Modeling of the Interactions between 4-Methylumbelliferone, 1-Naphthol, and Zidovudine Glucuronidation by UDP-Glucuronosyltransferase 2B7 (UGT2B7) Provides Evidence for Multiple Substrate Binding and Effector Sites. Molecular Pharmacology, 2008, 74, 1152-1162.	1.0	56
57	Morphine Glucuronidation and Glucosidation Represent Complementary Metabolic Pathways That Are Both Catalyzed by UDP-Glucuronosyltransferase 2B7: Kinetic, Inhibition, and Molecular Modeling Studies. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 126-137.	1.3	55
58	Purification and immunochemical characterization of a low-pl form of UDP glucuronosyltransferase from mouse liver. Archives of Biochemistry and Biophysics, 1984, 231, 487-497.	1.4	53
59	Isolation, Sequence, and Developmental Expression of Rat UGT2B2: The Gene Encoding a Constitutive UDP Glucuronosyltransferase That Metabolizes Etiocholanolone and Androsterone. DNA and Cell Biology, 1991, 10, 515-524.	0.9	52
60	Relationship between hyperbilirubinaemia and UDP-glucuronosyltransferase 1A1 (UGT1A1) polymorphism in adult HIV-infected Thai patients treated with indinavir. Pharmacogenetics and Genomics, 2006, 16, 321-329.	0.7	52
61	Interaction of Cytochrome P450 3A4 and UDP-Glucuronosyltransferase 2B7: Evidence for Protein-Protein Association and Possible Involvement of CYP3A4 J-Helix in the Interaction. Molecular Pharmacology, 2009, 75, 956-964.	1.0	52
62	Influence of N-Terminal Domain Histidine and Proline Residues on the Substrate Selectivities of Human UDP-Glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Drug Metabolism and Disposition, 2009, 37, 1948-1955.	1.7	51
63	A Novel Function for UDP Glycosyltransferase 8: Galactosidation of Bile Acids. Molecular Pharmacology, 2015, 87, 442-450.	1.0	51
64	Critical Roles of Residues 36 and 40 in the Phenol and Tertiary Amine Aglycone Substrate Selectivities of UDP-Glucuronosyltransferases 1A3 and 1A4. Molecular Pharmacology, 2007, 72, 1054-1062.	1.0	50
65	Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17. Cancer Research, 2016, 76, 5881-5893.	0.4	50
66	The Role of Glucuronidation in 7-Ethyl-10-hydroxycamptothecin Resistancein vitro. Japanese Journal of Cancer Research, 1997, 88, 1211-1217.	1.7	48
67	Cleavage of nascent UDP glucuronosyltransferase from rat liver by dog pancreatic microsomes. Biochemical and Biophysical Research Communications, 1984, 122, 1441-1449.	1.0	46
68	Steroid UDP glucuronosyltransferases. Journal of Steroid Biochemistry and Molecular Biology, 1992, 43, 1099-1105.	1.2	46
69	Estrogen Receptor α, Fos-Related Antigen-2, and c-Jun Coordinately Regulate Human UDP Glucuronosyltransferase 2B15 and 2B17 Expression in Response to 17β-Estradiol in MCF-7 Cells. Molecular Pharmacology, 2009, 76, 425-439.	1.0	46
70	Protein-Protein Interactions between Rat Hepatic Cytochromes P450 (P450s) and UDP-Glucuronosyltransferases (UGTs): Evidence for the Functionally Active UGT in P450-UGT Complex. Drug Metabolism and Pharmacokinetics, 2007, 22, 367-376.	1.1	45
71	Amino terminal domains of human UDP-glucuronosyltransferases (UGT) 2B7 and 2B15 associated with substrate selectivity and autoactivation. Biochemical Pharmacology, 2007, 73, 1463-1473.	2.0	43
72	Deregulation of the Genes that Are Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Hepatocellular Carcinoma. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 363-381.	1.3	43

#	Article	IF	CITATIONS
73	Glucosidation of hyodeoxycholic acid by UDP-glucuronosyltransferase 2B7. Biochemical Pharmacology, 2003, 65, 417-421.	2.0	41
74	UGT3A: novel UDP-glycosyltransferases of the UGT superfamily. Drug Metabolism Reviews, 2010, 42, 45-54.	1.5	41
75	UGT1A10 is responsible for SN-38 glucuronidation and its expression in human lung cancers. Anticancer Research, 2004, 24, 2893-6.	0.5	41
76	Alteration of the Function of the UDP-Glucuronosyltransferase 1A Subfamily by Cytochrome P450 3A4: Different Susceptibility for UGT Isoforms and UGT1A1/7 Variants. Drug Metabolism and Disposition, 2014, 42, 229-238.	1.7	40
77	Modulation of UDP-Glucuronosyltransferase 2B7 Function by Cytochrome P450s in Vitro: Differential Effects of CYP1A2, CYP2C9 and CYP3A4. Biological and Pharmaceutical Bulletin, 2005, 28, 2026-2027.	0.6	39
78	Regulation of Human UGT2B15 and UGT2B17 by miR-376c in Prostate Cancer Cell Lines. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 417-425.	1.3	39
79	Differences in udp-glucuronosyltransferase activities in congenic inbred rats homozygous and heterozygous for the jaundice locus. Biochemical Pharmacology, 1983, 32, 3777-3781.	2.0	37
80	Localization of uridine 5′-diphosphate-glucuronosyltransferase in human liver injury. Gastroenterology, 1995, 108, 1464-1469.	0.6	37
81	Epirubicin Upregulates UDP Clucuronosyltransferase 2B7 Expression in Liver Cancer Cells via the p53 Pathway. Molecular Pharmacology, 2014, 85, 887-897.	1.0	36
82	The Homeodomain Pbx2-Prep1 Complex Modulates Hepatocyte Nuclear Factor 1α-Mediated Activation of theUDP-Glucuronosyltransferase 2B17Gene. Molecular Pharmacology, 2002, 62, 154-161.	1.0	33
83	Characterization of the Binding of Drugs to Human Intestinal Fatty Acid Binding Protein (IFABP): Potential Role of IFABP as an Alternative to Albumin for in Vitro-in Vivo Extrapolation of Drug Kinetic Parameters. Drug Metabolism and Disposition, 2009, 37, 1395-1403.	1.7	33
84	The UGTome: The expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism. , 2019, 204, 107414.		32
85	Tissue specific differences in the regulation of the UDP glucuronosyltransferase 2B17 gene promoter. Pharmacogenetics and Genomics, 2000, 10, 809-820.	5.7	31
86	Cloning and Characterization of the Human UDP-glucuronosyltransferase 1A8, 1A9, and 1A10 Gene Promoters. Journal of Biological Chemistry, 2003, 278, 36107-36114.	1.6	31
87	Mutational Analysis of the Carboxy-Terminal Region of UDP-Glucuronosyltransferase 2B1. DNA and Cell Biology, 1996, 15, 489-494.	0.9	30
88	Hepatocyte nuclear factor1 transcription factors are essential for the UDP-glucuronosyltransferase 1A9 promoter response to hepatocyte nuclear factor 4α. Pharmacogenetics and Genomics, 2007, 17, 25-36.	0.7	30
89	A Novel Polymorphism in a Forkhead Box A1 (FOXA1) Binding Site of the Human UDP Glucuronosyltransferase 2B17 Gene Modulates Promoter Activity and Is Associated with Altered Levels of Circulating Androstane-31±,171²-diol Glucuronide. Molecular Pharmacology, 2010, 78, 714-722.	1.0	30
90	Isolation of the UDP-Glucuronosyltransferase 1A3 and 1A4 Proximal Promoters and Characterization of Their Dependence on the Transcription Factor Hepatocyte Nuclear Factor 11±. Drug Metabolism and Disposition, 2007, 35, 116-120.	1.7	29

#	Article	IF	CITATIONS
91	Activation of ALDH1A1 in MDA-MB-468 breast cancer cells that over-express CYP2J2 protects against paclitaxel-dependent cell death mediated by reactive oxygen species. Biochemical Pharmacology, 2017, 143, 79-89.	2.0	29
92	Sulfinpyrazone C-Glucuronidation Is Catalyzed Selectively by Human UDP-Glucuronosyltransferase 1A9. Drug Metabolism and Disposition, 2006, 34, 1950-1953.	1.7	28
93	Identification of Residues That Confer Sugar Selectivity to UDP-Glycosyltransferase 3A (UGT3A) Enzymes. Journal of Biological Chemistry, 2012, 287, 24122-24130.	1.6	28
94	The effect of N-linked glycosylation on the substrate preferences of UDP glucuronosyltransferases. Biochemical and Biophysical Research Communications, 1990, 166, 1293-1299.	1.0	26
95	HNFI Î \pm Activates the Rat UDP Glucuronosyltransferase UGT2B1 Gene Promoter. DNA and Cell Biology, 1997, 16, 207-214.	0.9	26
96	Human UDP-Glucuronosyltransferase Expression in Insect Cells: Ratio of Active to Inactive Recombinant Proteins and the Effects of a C-Terminal His-Tag on Glucuronidation Kinetics. Drug Metabolism and Disposition, 2012, 40, 1935-1944.	1.7	26
97	The Nonspecific Binding of Tyrosine Kinase Inhibitors to Human Liver Microsomes. Drug Metabolism and Disposition, 2015, 43, 1934-1937.	1.7	26
98	Homodimerization of UDP-glucuronosyltransferase 2B7 (UGT2B7) and identification of a putative dimerization domain by protein homology modeling. Biochemical Pharmacology, 2011, 82, 2016-2023.	2.0	25
99	Induction of Human UDP-Glucuronosyltransferase 2B7 Gene Expression by Cytotoxic Anticancer Drugs in Liver Cancer HepG2 Cells. Drug Metabolism and Disposition, 2015, 43, 660-668.	1.7	25
100	Effects of amino acid substitutions at positions 33 and 37 on UDP-glucuronosyltransferase 1A9 (UGT1A9) activity and substrate selectivity. Biochemical Pharmacology, 2012, 84, 1511-1521.	2.0	23
101	Suppression of Cytochrome P450 3A4 Function by UDP-Glucuronosyltransferase 2B7 through a Protein-Protein Interaction: Cooperative Roles of the Cytosolic Carboxyl-Terminal Domain and the Luminal Anchoring Region. Molecular Pharmacology, 2015, 88, 800-812.	1.0	23
102	Regulation of UDP-Glucuronosyltransferases UGT2B4 and UGT2B7 by MicroRNAs in Liver Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 386-397.	1.3	23
103	Recent Advances in the In Silico Modelling of UDP Glucuronosyltransferase Substrates. Current Drug Metabolism, 2008, 9, 60-69.	0.7	22
104	Forkhead Box Protein A1 Regulates UDP-Glucuronosyltransferase 2B15 Gene Transcription in LNCaP Prostate Cancer Cells. Drug Metabolism and Disposition, 2010, 38, 2105-2109.	1.7	21
105	Insights into the UDP-sugar selectivities of human UDP-glycosyltransferases (UGT): a molecular modeling perspective. Drug Metabolism Reviews, 2015, 47, 335-45.	1.5	21
106	The caudal-related homeodomain protein Cdx2 and hepatocyte nuclear factor 11± cooperatively regulate the UDP-glucuronosyltransferase 2B7 gene promoter. Pharmacogenetics and Genomics, 2006, 16, 527-536.	0.7	20
107	Polymorphisms and Haplotypes of the UDP-Glucuronosyltransferase 2B7 Gene Promoter. Drug Metabolism and Disposition, 2014, 42, 854-862.	1.7	20
108	Cell-free translation of mouse liver mRNA coding for two forms of UDP glucuronosyltransferase. Archives of Biochemistry and Biophysics, 1984, 230, 676-680.	1.4	19

#	Article	IF	CITATIONS
109	Bile acid glucuronidation by rat liver microsomes and cDNA-expressed UDP-glucuronosyltransferases. BBA - Proteins and Proteomics, 1994, 1205, 75-82.	2.1	19
110	UDP glucuronosyltransferase in the cirrhotic rat liver. Journal of Gastroenterology and Hepatology (Australia), 1996, 11, 373-379.	1.4	19
111	Carboxylic Acid Drug-Induced DNA Nicking in HEK293 Cells Expressing Human UDP-Glucuronosyltransferases: Role of Acyl Glucuronide Metabolites and Glycation Pathways. Chemical Research in Toxicology, 2007, 20, 1520-1527.	1.7	18
112	Human UDP-Glucuronosyltransferases: Effects of altered expression in breast and pancreatic cancer cell lines. Cancer Biology and Therapy, 2015, 16, 714-723.	1.5	18
113	Inhibitory effects of adenine nucleotides and related substances on UDP-glucuronosyltransferase: Structure–effect relationships and evidence for an allosteric mechanism. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 1557-1566.	1.1	16
114	Application of Homology Modeling to Generate CYP1A1 Mutants with Enhanced Activation of the Cancer Chemotherapeutic Prodrug Dacarbazine. Molecular Pharmacology, 2011, 80, 879-888.	1.0	16
115	Transporter-Mediated Uptake of UDP–Glucuronic Acid by Human Liver Microsomes: Assay Conditions, Kinetics, and Inhibition. Drug Metabolism and Disposition, 2015, 43, 147-153.	1.7	16
116	Comprehensive Characterization of Mouse UDP-Glucuronosyltransferase (Ugt) Belonging to the Ugt2b Subfamily: Identification of Ugt2b36 as the Predominant Isoform Involved in Morphine Glucuronidation. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 199-208.	1.3	16
117	Identification and Characterization of Functional Hepatocyte Nuclear Factor 1â€Binding Sites in UDPâ€Glucuronosyltransferase Genes. Methods in Enzymology, 2005, 400, 22-46.	0.4	15
118	Novel Nine-Exon AR Transcripts (Exon 1/Exon 1b/Exons 2–8) in Normal and Cancerous Breast and Prostate Cells. International Journal of Molecular Sciences, 2017, 18, 40.	1.8	15
119	The Expression Profiles of ADME Genes in Human Cancers and Their Associations with Clinical Outcomes. Cancers, 2020, 12, 3369.	1.7	15
120	The Expression Profiles and Deregulation of UDP-Glycosyltransferase (UGT) Genes in Human Cancers and Their Association with Clinical Outcomes. Cancers, 2021, 13, 4491.	1.7	15
121	Inhibition of Morphine Clucuronidation in the Liver Microsomes of Rats and Humans by Monoterpenoid Alcohols. Biological and Pharmaceutical Bulletin, 2012, 35, 1811-1817.	0.6	14
122	UDPâ€Clucuronosyltransferase (UGT)â€mediated attenuations of cytochrome P450 3A4 activity: UGT isoformâ€dependent mechanism of suppression. British Journal of Pharmacology, 2020, 177, 1077-1089.	2.7	14
123	Localization of UDP glucuronosyltransferase gene(s) on mouse chromosome 5. Somatic Cell and Molecular Genetics, 1987, 13, 179-182.	0.7	13
124	Fatty acyl-CoA as an endogenous activator of UDP-glucuronosyltransferases. Biochemical and Biophysical Research Communications, 2006, 345, 1649-1656.	1.0	13
125	Regulation of UDP-Glucuronosyltransferase 2B15 by miR-331-5p in Prostate Cancer Cells Involves Canonical and Noncanonical Target Sites. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 48-59.	1.3	13
126	Separation of different UDP glucuronosyltransferase activities according to charge heterogeneity by chromatofocusing using mouse liver microsomes. Biochemical Pharmacology, 1985, 34, 737-746.	2.0	12

#	Article	IF	CITATIONS
127	Effects of Andrographis paniculata and Orthosiphon stamineus Extracts on the Glucuronidation of 4-Methylumbelliferone in Human UGT Isoforms. Molecules, 2010, 15, 3578-3592.	1.7	12
128	Induction of UDP-Glucuronosyltransferase 2B15 Gene Expression by the Major Active Metabolites of Tamoxifen, 4-Hydroxytamoxifen and Endoxifen, in Breast Cancer Cells. Drug Metabolism and Disposition, 2015, 43, 889-897.	1.7	12
129	Effect of Different Detergent Systems on the Molecular Size of UDP Glucuronosyltransferase and Other Microsomal Drug-Metabolizing Enzymes. Membrane Biochemistry, 1984, 5, 193-207.	0.6	11
130	Introduction of an N-Glycosylation Site into UDP-Glucuronosyltransferase 2B3 Alters Its Sensitivity to Cytochrome P450 3A1-Dependent Modulation. Frontiers in Pharmacology, 2016, 7, 427.	1.6	10
131	Activation of the pro-migratory bone morphogenetic protein receptor 1B gene in human MDA-MB-468 triple-negative breast cancer cells that over-express CYP2J2. International Journal of Biochemistry and Cell Biology, 2016, 80, 173-178.	1.2	10
132	Regulation of human UDP-glycosyltransferase (<i>UGT</i>) genes by miRNAs. Drug Metabolism Reviews, 2022, 54, 120-140.	1.5	10
133	A comparison of the isoelectric points of mouse liver UDP-glucuronosyltransferase enzymes conjugating the twelve benzo[a]pyrene phenols. Biochemical and Biophysical Research Communications, 1982, 109, 1075-1082.	1.0	9
134	Purification of a form of mouse liver UDP glucuronosyltransferase which glucuronidates androgens. The Journal of Steroid Biochemistry, 1983, 19, 1097-1102.	1.3	9
135	The In Vitro Characterization of Inhibitory Drug–Drug Interactions Involving UDP-Clucuronosyltransferase. , 2010, , 217-236.		9
136	Pro-migratory actions of the prostacyclin receptor in human breast cancer cells that over-express cyclooxygenase-2. Biochemical Pharmacology, 2015, 96, 306-314.	2.0	9
137	Advances in drug metabolism and pharmacogenetics research in Australia. Pharmacological Research, 2017, 116, 7-19.	3.1	9
138	Intergenic Splicing between Four Adjacent <i>UGT</i> Genes (<i>2B15, 2B29P2, 2B17, 2B29P1</i>) Gives Rise to Variant UGT Proteins That Inhibit Glucuronidation via Protein-Protein Interactions. Molecular Pharmacology, 2018, 94, 938-952.	1.0	9
139	Differential induction of UDP glucuronosyltransferase activities towards various substrates after polycyclic aromatic hydrocarbon administration to rats. Toxicology Letters, 1982, 12, 259-263.	0.4	8
140	UDPglucosyltransferase and Its Kinetic Fluorimetric Assay. FEBS Journal, 1983, 130, 141-145.	0.2	8
141	Cooperative Regulation of Intestinal UDP-Glucuronosyltransferases 1A8, -1A9, and 1A10 by CDX2 and HNF4 <i>α</i> Is Mediated by a Novel Composite Regulatory Element. Molecular Pharmacology, 2018, 93, 541-552.	1.0	8
142	Hetero-oligomer formation of mouse UDP-glucuronosyltransferase (UGT) 2b1 and 1a1 results in the gain of glucuronidation activity towards morphine, an activity which is absent in homo-oligomers of either UGT. Biochemical and Biophysical Research Communications, 2020, 525, 348-353.	1.0	8
143	Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins. Xenobiotica, 2015, 45, 847-857.	0.5	6
144	Exemestane and Its Active Metabolite 17-Hydroexemestane Induce UDP-Glucuronosyltransferase (UGT) 2B17 Expression in Breast Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 482-491.	1.3	6

#	Article	IF	CITATIONS
145	Investigation of the Endoplasmic Reticulum Localization of UDP-Glucuronosyltransferase 2B7 with Systematic Deletion Mutants. Molecular Pharmacology, 2019, 95, 551-562.	1.0	5
146	Circular RNAs of UDP-Glycosyltransferase (<i>UGT</i>) Genes Expand the Complexity and Diversity of the UGT Transcriptome. Molecular Pharmacology, 2021, 99, 488-503.	1.0	5
147	Coexpression of Human Hepatic Uridine Diphosphate Glucuronosyltransferase Proteins: Implications for Ontogenetic Mechanisms and Isoform Coregulation. Journal of Clinical Pharmacology, 2020, 60, 722-733.	1.0	4
148	Drug and Chemical Glucosidation by Control Supersomes and Membranes from <i>Spodoptera frugiperda</i> (Sf) 9 Cells: Implications for the Apparent Glucuronidation of Xenobiotics by UDP-glucuronosyltransferase 1A5. Drug Metabolism and Disposition, 2019, 47, 271-278.	1.7	3
149	Use of a Baculovirus-Mammalian Cell Expression-System for Expression of Drug-Metabolizing Enzymes: Optimization of Infection With a Focus on Cytochrome P450 3A4. Frontiers in Pharmacology, 2022, 13, 832931.	1.6	3
150	Differential induction and glycosylation of UDP-glucuronosyltransferase. Biochemical Society Transactions, 1984, 12, 54-55.	1.6	2
151	The carboxyl-terminal di-lysine motif is essential for catalytic activity of UDP-glucuronosyltransferase 1A9. Drug Metabolism and Pharmacokinetics, 2020, 35, 466-474.	1.1	2
152	Potential Novel Role of UDP Glucuronosyltransferases 2B11 and 2B28 in Crosstalk Between Androgen and Lipid Signalling. FASEB Journal, 2020, 34, 1-1.	0.2	1
153	Comprehensive characterization of mouse hepatic UDPâ€glucuronosyltransferases: Major participation of Ugt2b1 in bisphenol A glucuronidation. FASEB Journal, 2019, 33, 508.10.	0.2	0