Sukrut Somani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2728630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Limited Impact of the Protein Corona on the Cellular Uptake of PEGylated Zein Micelles by Melanoma Cancer Cells. Pharmaceutics, 2022, 14, 439.	4.5	9
2	Lactoferrin- and Dendrimer-Bearing Gold Nanocages for Stimulus-Free DNA Delivery to Prostate Cancer Cells. International Journal of Nanomedicine, 2022, Volume 17, 1409-1421.	6.7	9
3	Regression of Melanoma Following Intravenous Injection of Plumbagin Entrapped in Transferrin-Conjugated, Lipid–Polymer Hybrid Nanoparticles. International Journal of Nanomedicine, 2021, Volume 16, 2615-2631.	6.7	15
4	Lactoferrin-Bearing Gold Nanocages for Gene Delivery in Prostate Cancer Cells in vitro. International Journal of Nanomedicine, 2021, Volume 16, 4391-4407.	6.7	11
5	Octadecyl chain-bearing PEGylated poly(propyleneimine)-based dendrimersomes: physicochemical studies, redox-responsiveness, DNA condensation, cytotoxicity and gene delivery to cancer cells. Biomaterials Science, 2021, 9, 1431-1448.	5.4	13
6	Development of transferrin-bearing vesicles encapsulating aspirin for cancer therapy. Journal of Liposome Research, 2020, 30, 174-181.	3.3	2
7	Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. British Journal of Cancer, 2020, 122, 517-527.	6.4	33
8	Anti-Tumor Activity of Intravenously Administered Plumbagin Entrapped in Targeted Nanoparticles. Journal of Biomedical Nanotechnology, 2020, 16, 85-100.	1.1	6
9	Transferrinâ€bearing liposomes entrapping plumbagin for targeted cancer therapy. Journal of Interdisciplinary Nanomedicine, 2019, 4, 54-71.	3.6	26
10	Camptothecin-based dendrimersomes for gene delivery and redox-responsive drug delivery to cancer cells. Nanoscale, 2019, 11, 20058-20071.	5.6	51
11	Proof of concept studies for siRNA delivery by nonionic surfactant vesicles: <i>in vitro</i> and <i>in vivo</i> evaluation of protein knockdown. Journal of Liposome Research, 2019, 29, 229-238.	3.3	16
12	Regression of prostate tumors after intravenous administration of lactoferrin-bearing polypropylenimine dendriplexes encoding TNF-α, TRAIL, and interleukin-12. Drug Delivery, 2018, 25, 679-689.	5.7	31
13	Redox-sensitive, cholesterol-bearing PEGylated poly(propylene imine)-based dendrimersomes for drug and gene delivery to cancer cells. Nanoscale, 2018, 10, 22830-22847.	5.6	35
14	Targeted nonviral gene therapy in prostate cancer. International Journal of Nanomedicine, 2018, Volume 13, 5753-5767.	6.7	29
15	PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Scientific Reports, 2018, 8, 9410.	3.3	57
16	Tumor regression after intravenous administration of targeted vesicles entrapping the vitamin E α-tocotrienol. Journal of Controlled Release, 2017, 246, 79-87.	9.9	27
17	Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1445-1454.	3.3	36
18	Enhanced gene expression in the brain following intravenous administration of lactoferrin-bearing polypropylenimine dendriplex. Journal of Controlled Release, 2015, 217, 235-242.	9.9	39

Sukrut Somani

#	Article	IF	CITATIONS
19	Transferrin-bearing dendrimers for cancer therapy: an update. Nanomedicine, 2015, 10, 2125-2127.	3.3	5
20	Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. Journal of Controlled Release, 2014, 188, 78-86.	9.9	75
21	Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine, 2014, 9, 2403-2414.	3.3	55
22	Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells. Therapeutic Delivery, 2013, 4, 629-640.	2.2	80