Yunjun Ruan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2728518/publications.pdf

Version: 2024-02-01

44 papers 4,220 citations

147726 31 h-index 42 g-index

44 all docs

44 docs citations

44 times ranked 5911 citing authors

#	Article	IF	CITATIONS
1	Hierarchical NiCo ₂ S ₄ @NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15364-15372.	4.0	468
2	Interface engineering: The Ni(OH) 2 /MoS 2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy, 2017, 37, 74-80.	8.2	436
3	NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm, 2013, 15, 7649.	1.3	285
4	Hierarchical Configuration of NiCo ₂ S ₄ Nanotube@Ni–Mn Layered Double Hydroxide Arrays/Three-Dimensional Graphene Sponge as Electrode Materials for High-Capacitance Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 15840-15847.	4.0	214
5	Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy, 2018, 47, 199-209.	8.2	202
6	Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors. Journal of Power Sources, 2013, 243, 396-402.	4.0	193
7	Mutually beneficial Co ₃ O ₄ @MoS ₂ heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. Journal of Materials Chemistry A, 2018, 6, 2067-2072.	5.2	178
8	Water-Activated VOPO (sub) 4 (sub) for Magnesium Ion Batteries. Nano Letters, 2018, 18, 6441-6448.	4.5	127
9	Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. Journal of Power Sources, 2017, 359, 340-348.	4.0	125
10	A Universal Method to Engineer Metal Oxide–Metal–Carbon Interface for Highly Efficient Oxygen Reduction. ACS Nano, 2018, 12, 3042-3051.	7.3	125
11	Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors. Journal of Power Sources, 2016, 301, 122-130.	4.0	123
12	Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation. Nano Energy, 2018, 47, 275-284.	8.2	116
13	Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence-state doping. Nano Energy, 2018, 53, 144-151.	8.2	114
14	Nickel Sulfide Nanoparticles Synthesized by Microwave-assisted Method as Promising Supercapacitor Electrodes: An Experimental and Computational Study. Electrochimica Acta, 2015, 182, 361-367.	2.6	99
15	Intercalation of Glucose in NiMn-Layered Double Hydroxide Nanosheets: an Effective Path Way towards Battery-type Electrodes with Enhanced Performance. Electrochimica Acta, 2016, 216, 35-43.	2.6	98
16	Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2016, 4, 14509-14538.	5.2	95
17	Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors. Electrochimica Acta, 2017, 250, 327-334.	2.6	94
18	Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors. Materials Letters, 2013, 108, 164-167.	1.3	89

#	Article	IF	CITATIONS
19	Unraveling the high-activity nature of Fe–N–C electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between Fe–N ₄ and Fe ₄ N. Journal of Materials Chemistry A, 2019, 7, 11792-11801.	5.2	84
20	Morphological modulation of NiCo2Se4 nanotubes through hydrothermal selenization for asymmetric supercapacitor. Electrochimica Acta, 2020, 356, 136837.	2.6	78
21	Different charge-storage mechanisms in disulfide vanadium and vanadium carbide monolayer. Journal of Materials Chemistry A, 2015, 3, 9909-9914.	5.2	76
22	Nitrogen- and oxygen-doped carbon with abundant micropores derived from biomass waste for all-solid-state flexible supercapacitors. Journal of Colloid and Interface Science, 2022, 610, 1088-1099.	5.0	67
23	Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors. Physical Chemistry Chemical Physics, 2016, 18, 4460-4467.	1.3	65
24	Charging/Discharging Dynamics in Two-Dimensional Titanium Carbide (MXene) Slit Nanopore: Insights from molecular dynamic study. Electrochimica Acta, 2016, 196, 75-83.	2.6	59
25	Ni nanoparticles@Ni–Mo nitride nanorod arrays: a novel 3D-network hierarchical structure for high areal capacitance hybrid supercapacitors. Nanoscale, 2017, 9, 18032-18041.	2.8	59
26	Al-doped \hat{l}^2 -NiS Mesoporous Nanoflowers for Hybrid-type Electrodes toward Enhanced Electrochemical Performance. Electrochimica Acta, 2017, 236, 307-318.	2.6	58
27	Activation Mechanism Study of Dandelion-Like Co ₉ S ₈ Nanotubes in Supercapacitors. Journal of the Electrochemical Society, 2014, 161, A996-A1000.	1.3	53
28	Nickel-iron diselenide hollow nanoparticles with strongly hydrophilic surface for enhanced oxygen evolution reaction activity. Electrochimica Acta, 2018, 286, 172-178.	2.6	51
29	Direct Formation of Hedgehogâ€Like Hollow Niâ€Mn Oxides and Sulfides for Supercapacitor Electrodes. Particle and Particle Systems Characterization, 2014, 31, 857-862.	1.2	50
30	Oneâ€Pot Fabrication of Layered <i>α</i> â€Phaseâ€Nickel–Cobalt Hydroxides as Advanced Electrode Mater for Pseudocapacitors. ChemPlusChem, 2015, 80, 181-187.	rials 1.3	39
31	Construction of MoO ₂ Quantum Dot–Graphene and MoS ₂ Nanoparticle–Graphene Nanoarchitectures toward Ultrahigh Lithium Storage Capability. ACS Applied Materials & Ditempted Materials & Ditempted Naterials & Ditempted N	4.0	38
32	NiS Nanoflake-Coated Carbon Nanofiber Electrodes for Supercapacitors. ACS Applied Nano Materials, 2022, 5, 6192-6200.	2.4	37
33	Designing a carbon nanofiber-encapsulated iron carbide anode and nickel-cobalt sulfide-decorated carbon nanofiber cathode for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 621, 139-148.	5.0	31
34	ZnFe2O4-nanocrystal-assembled microcages as an anode material for high performance lithium-ion batteries. Materials Today Energy, 2017, 3, 1-8.	2.5	30
35	In situ nitrogen-doped helical mesoporous carbonaceous nanotubes for superior-high lithium anodic performance. Carbon, 2018, 130, 599-606.	5.4	30
36	Hollow spiny shell of porous Ni–Mn oxides: A facile synthesis route and their application as electrode in supercapacitors. Journal of Power Sources, 2015, 286, 66-72.	4.0	28

#	Article	IF	CITATIONS
37	Construction of (Ni, Cu) Se ₂ //Reduced Graphene Oxide for High Energy Density Asymmetric Supercapacitor. ChemElectroChem, 2017, 4, 3004-3010.	1.7	28
38	Understanding the electrochemical activation behavior of Co(OH)2 nanotubes during the ion-exchange process. Materials Today Energy, 2017, 4, 122-131.	2.5	25
39	Charge localization to optimize reactant adsorption on KCu7S4/CuO interfacial structure toward selective CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 298, 120531.	10.8	25
40	Cobalt sulfide nanotube arrays grown on FTO and graphene membranes for high-performance supercapacitor application. Applied Surface Science, 2014, 311, 793-798.	3.1	16
41	Carbonâ€coated Vanadium Oxide Nanoflowers with K ⁺ Ions Preâ€embedment as a Highâ€rate Cathode for Zincâ€lon Batteries. ChemNanoMat, 2022, 8, .	1.5	8
42	Facile synthesis of pure Na3V2(PO4)3 powder via a two-stage carbothermal reduction strategy. Journal of Sol-Gel Science and Technology, 0, , 1 .	1.1	3
43	Supercapacitors: Direct Formation of Hedgehog-Like Hollow Ni-Mn Oxides and Sulfides for Supercapacitor Electrodes (Part. Part. Syst. Charact. 8/2014). Particle and Particle Systems Characterization, 2014, 31, 814-814.	1.2	1
44	Unravelling the High-Activity Nature of Fe-N-C Electrocatalysts for Oxygen Reduction Reaction: The Extraordinary Synergy between Fe-Nx and Fe4N. SSRN Electronic Journal, 0, , .	0.4	0