Shanghai Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2728202/publications.pdf Version: 2024-02-01

SHANCHALCHEN

#	Article	IF	CITATIONS
1	Intermittent Leucine Deprivation Produces Long-lasting Improvement in Insulin Sensitivity by Increasing Hepatic <i>Gcn2</i> Expression. Diabetes, 2022, 71, 206-218.	0.6	5
2	Hepatokine ERAP1 Disturbs Skeletal Muscle Insulin Sensitivity Via Inhibiting USP33-Mediated ADRB2 Deubiquitination. Diabetes, 2022, 71, 921-933.	0.6	5
3	Amino acid sensor GCN2 promotes SARS-CoV-2 receptor ACE2 expression in response to amino acid deprivation. Communications Biology, 2022, 5, .	4.4	4
4	A fifty percent leucine-restricted diet reduces fat mass and improves glucose regulation. Nutrition and Metabolism, 2021, 18, 34.	3.0	9
5	Activation of GCN2 in macrophages promotes white adipose tissue browning and lipolysis under leucine deprivation. FASEB Journal, 2021, 35, e21652.	0.5	7
6	Autophagy inhibition prevents glucocorticoid-increased adiposity via suppressing BAT whitening. Autophagy, 2020, 16, 451-465.	9.1	59
7	Overexpression of Smad7 in hypothalamic POMC neurons disrupts glucose balance by attenuating central insulin signaling. Molecular Metabolism, 2020, 42, 101084.	6.5	9
8	Activation of GCN2/ATF4 signals in amygdalar PKC-Î′ neurons promotes WAT browning under leucine deprivation. Nature Communications, 2020, 11, 2847.	12.8	29
9	ATF4 Deficiency Promotes Intestinal Inflammation in Mice by Reducing Uptake of Glutamine and Expression of Antimicrobial Peptides. Gastroenterology, 2019, 156, 1098-1111.	1.3	67
10	Hepatic c-Jun regulates glucose metabolism via FGF21 and modulates body temperature through the neural signals. Molecular Metabolism, 2019, 20, 138-148.	6.5	14
11	SGK1/FOXO3 Signaling in Hypothalamic POMC Neurons Mediates Glucocorticoid-Increased Adiposity. Diabetes, 2018, 67, 569-580.	0.6	23
12	ATF4/ATG5 Signaling in Hypothalamic Proopiomelanocortin Neurons Regulates Fat Mass via Affecting Energy Expenditure. Diabetes, 2017, 66, 1146-1158.	0.6	34
13	An ATF4-ATG5 signaling in hypothalamic POMC neurons regulates obesity. Autophagy, 2017, 13, 1088-1089.	9.1	21
14	Deletion of ATF4 in AgRP Neurons Promotes Fat Loss Mainly via Increasing Energy Expenditure. Diabetes, 2017, 66, 640-650.	0.6	33
15	miR-212-5p suppresses lipid accumulation by targeting FAS and SCD1. Journal of Molecular Endocrinology, 2017, 59, 205-217.	2.5	55
16	A Novel Function of Hepatic FOG2 in Insulin Sensitivity and Lipid Metabolism Through PPARα. Diabetes, 2016, 65, 2151-2163.	0.6	8
17	Effects of essential amino acids on lipid metabolism in mice and humans. Journal of Molecular Endocrinology, 2016, 57, 223-231.	2.5	21
18	Liver-specific Gene Inactivation of the Transcription Factor ATF4 Alleviates Alcoholic Liver Steatosis in Mice. Journal of Biological Chemistry, 2016, 291, 18536-18546.	3.4	37

Shanghai Chen

#	Article	IF	CITATIONS
19	Knockout of inositol-requiring enzyme 1α in pro-opiomelanocortin neurons decreases fat mass via increasing energy expenditure. Open Biology, 2016, 6, 160131.	3.6	12
20	BTG1 ameliorates liver steatosis by decreasing stearoyl-CoA desaturase 1 (SCD1) abundance and altering hepatic lipid metabolism. Science Signaling, 2016, 9, ra50.	3.6	38
21	MAPK1/3 regulate hepatic lipid metabolism via ATG7-dependent autophagy. Autophagy, 2016, 12, 592-593.	9.1	35
22	Activation of ERK1/2 Ameliorates Liver Steatosis in Leptin Receptor–Deficient (<i>db/db</i>) Mice via Stimulating ATG7-Dependent Autophagy. Diabetes, 2016, 65, 393-405.	0.6	44
23	A novel function of Bâ€cell translocation gene 1 (<i>BTG1</i>) in the regulation of hepatic insulin sensitivity in mice <i>via</i> câ€Jun. FASEB Journal, 2016, 30, 348-359.	0.5	13
24	Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget, 2016, 7, 63679-63689.	1.8	66
25	MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4. Journal of Biological Chemistry, 2015, 290, 8185-8195.	3.4	65
26	Hepatic Phosphoserine Aminotransferase 1 Regulates Insulin Sensitivity in Mice via Tribbles Homolog 3. Diabetes, 2015, 64, 1591-1602.	0.6	34
27	Hepatic serum- and glucocorticoid-regulated protein kinase 1 (SCK1) regulates insulin sensitivity in mice via extracellular-signal-regulated kinase 1/2 (ERK1/2). Biochemical Journal, 2014, 464, 281-289.	3.7	28
28	Effects of individual branched-chain amino acids deprivation on insulin sensitivity and glucose metabolism in mice. Metabolism: Clinical and Experimental, 2014, 63, 841-850.	3.4	87
29	A Novel Function of MicroRNA 130a-3p in Hepatic Insulin Sensitivity and Liver Steatosis. Diabetes, 2014, 63, 2631-2642.	0.6	77
30	Central Activating Transcription Factor 4 (ATF4) Regulates Hepatic Insulin Resistance in Mice via S6K1 Signaling and the Vagus Nerve. Diabetes, 2013, 62, 2230-2239.	0.6	38
31	Leucine Deprivation Increases Hepatic Insulin Sensitivity via GCN2/mTOR/S6K1 and AMPK Pathways. Diabetes, 2011, 60, 746-756.	0.6	249
32	Leucine Deprivation Stimulates Fat Loss via Increasing CRH Expression in the Hypothalamus and Activating The Sympathetic Nervous System. Molecular Endocrinology, 2011, 25, 1624-1635.	3.7	55
33	Leucine Deprivation Decreases Fat Mass by Stimulation of Lipolysis in White Adipose Tissue and Upregulation of Uncoupling Protein 1 (UCP1) in Brown Adipose Tissue. Diabetes, 2010, 59, 17-25.	0.6	140