
Anastasia Yu Efimenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2728148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regenerative medicine for male infertility: A focus on stem cell niche injury models. Biomedical Journal, 2022, 45, 607-614.	3.1	9
2	Urokinase-Type Plasminogen Activator Enhances the Neuroprotective Activity of Brain-Derived Neurotrophic Factor in a Model of Intracerebral Hemorrhage. Biomedicines, 2022, 10, 1346.	3.2	2
3	Correlations between vessel stiffness and biomarkers of senescent cell in elderly patients. Kardiologiya, 2022, 62, 15-22.	0.7	1
4	Secretome of Multipotent Mesenchymal Stromal Cells as a Promising Treatment and for Rehabilitation of Patients with the Novel Coronaviral Infection. Herald of the Russian Academy of Sciences, 2021, 91, 170-175.	0.6	1
5	Proteolytic enzyme and adiponectin receptors as potential targets for COVID-19 therapy. Cardiovascular Therapy and Prevention (Russian Federation), 2021, 20, 2791.	1.4	1
6	Abstract P-41: Contribution of Matrix-bound Vesicles Produced by Mesenchymal Stromal Cells in the Differentiation of Multipotent Stem Cells in vitro. International Journal of Biomedicine, 2021, 11, S30-S30.	0.2	0
7	Decreased Insulin Sensitivity in Telomerase-Immortalized Mesenchymal Stem Cells Affects Efficacy and Outcome of Adipogenic Differentiation in vitro. Frontiers in Cell and Developmental Biology, 2021, 9, 662078.	3.7	8
8	Self-Organization Provides Cell Fate Commitment in MSC Sheet Condensed Areas via ROCK-Dependent Mechanism. Biomedicines, 2021, 9, 1192.	3.2	4
9	Platelet-Derived Growth Factor Induces SASP-Associated Gene Expression in Human Multipotent Mesenchymal Stromal Cells but Does Not Promote Cell Senescence. Biomedicines, 2021, 9, 1290.	3.2	5
10	MSC Secretome as a Promising Tool for Neuroprotection and Neuroregeneration in a Model of Intracerebral Hemorrhage. Pharmaceutics, 2021, 13, 2031.	4.5	10
11	Editorial: Extracellular RNAs as Outside Regulators of Gene Expression in Homeostasis and Pathology. Frontiers in Cell and Developmental Biology, 2021, 9, 818430.	3.7	0
12	Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 576176.	3.7	68
13	Total Blood Exosomes in Breast Cancer: Potential Role in Crucial Steps of Tumorigenesis. International Journal of Molecular Sciences, 2020, 21, 7341.	4.1	23
14	Mesenchymal Stromal Cell-Produced Components of Extracellular Matrix Potentiate Multipotent Stem Cell Response to Differentiation Stimuli. Frontiers in Cell and Developmental Biology, 2020, 8, 555378.	3.7	49
15	Biochemical Regulation of Regenerative Processes by Growth Factors and Cytokines: Basic Mechanisms and Relevance for Regenerative Medicine. Biochemistry (Moscow), 2020, 85, 11-26.	1.5	14
16	Secretome of Mesenchymal Stromal Cells Prevents Myofibroblasts Differentiation by Transferring Fibrosis-Associated microRNAs within Extracellular Vesicles. Cells, 2020, 9, 1272.	4.1	44
17	Towards the creation of a unified glossary of Russian biobanks. Cardiovascular Therapy and Prevention (Russian Federation), 2020, 19, 2710.	1.4	10
18	Cell Sheets of Mesenchymal Stromal Cells Effectively Stimulate Healing of Deep Soft Tissue Defects. Bulletin of Experimental Biology and Medicine, 2019, 167, 159-163.	0.8	7

ΑΝΑSTASIA YU ΕΓΙΜΕΝΚΟ

#	Article	IF	CITATIONS
19	Conditioned Medium from Human Mesenchymal Stromal Cells: Towards the Clinical Translation. International Journal of Molecular Sciences, 2019, 20, 1656.	4.1	104
20	Extracellular Matrix in the Regulation of Stem Cell Differentiation. Biochemistry (Moscow), 2019, 84, 232-240.	1.5	36
21	Unveiling Mesenchymal Stromal Cells' Organizing Function in Regeneration. International Journal of Molecular Sciences, 2019, 20, 823.	4.1	34
22	A magic kick for regeneration: role of mesenchymal stromal cell secretome in spermatogonial stem cell niche recovery. Stem Cell Research and Therapy, 2019, 10, 342.	5.5	22
23	Application of rat cryptorchidism model for the evaluation of mesenchymal stromal cell secretome regenerative potential. Biomedicine and Pharmacotherapy, 2019, 109, 1428-1436.	5.6	19
24	Blood Circulating Exosomes Contain Distinguishable Fractions of Free and Cell-Surface-Associated Vesicles. Current Molecular Medicine, 2019, 19, 273-285.	1.3	27
25	Ethical and Legal Aspects of Using Genome Editing Technologies in Medicine (Review). Sovremennye Tehnologii V Medicine, 2019, 11, 117.	1.1	1
26	"Cell-Free Therapeutics―from Components Secreted by Mesenchymal Stromal Cells as a Novel Class of Biopharmaceuticals. , 2018, , .		11
27	Informed consent to the receipt and use of human cellular material: juristic and ethical regulation. Russian Journal of Cardiology, 2018, , 84-90.	1.4	3
28	Collagen-1 Membrane for Replacing the Bladder Wall. Bulletin of Experimental Biology and Medicine, 2016, 162, 102-106.	0.8	3
29	448. Therapeutic Angiogenesis by Subcutaneous Cell Sheet Delivery Is Superior to Cell Injection: A Study of ADSC Efficacy in a Model of Hind Limb Ischemia. Molecular Therapy, 2016, 24, S178.	8.2	1
30	587. MiRNA-92a Is Involved in the Regulation of Adipose-Derived Stromal Cell (ADSC) Angiogenic Properties. Molecular Therapy, 2015, 23, S233-S234.	8.2	1
31	657. Delivery of Genetically Engineered Adipose-Derived Cell Sheets for Treatment of Ischemic Disorders – Development of Application in Animal Models. Molecular Therapy, 2015, 23, S262.	8.2	Ο
32	Enhanced angiogenesis in ischemic skeletal muscle after transplantation of cell sheets from baculovirus-transduced adipose-derived stromal cells expressing VEGF165. Stem Cell Research and Therapy, 2015, 6, 204.	5.5	42
33	Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Research and Therapy, 2015, 6, 221.	5.5	114
34	Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells. BioResearch Open Access, 2015, 4, 26-38.	2.6	66
35	miR-92a regulates angiogenic activity of adipose-derived mesenchymal stromal cells. Experimental Cell Research, 2015, 339, 61-66.	2.6	36
36	Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2. Journal of Translational Medicine, 2014, 12, 337.	4.4	73

#	Article	IF	CITATIONS
37	Adipose-Derived Mesenchymal Stromal Cells From Aged Patients With Coronary Artery Disease Keep Mesenchymal Stromal Cell Properties but Exhibit Characteristics of Aging and Have Impaired Angiogenic Potential. Stem Cells Translational Medicine, 2014, 3, 32-41.	3.3	104
38	Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. Journal of Translational Medicine, 2011, 9, 10.	4.4	178
39	Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow under hypoxia and inflammation in vitro. Cell and Tissue Biology, 2010, 4, 117-127.	0.4	14
40	Adipose Stromal Cells Stimulate Angiogenesis via Promoting Progenitor Cell Differentiation, Secretion of Angiogenic Factors, and Enhancing Vessel Maturation. Tissue Engineering - Part A, 2009, 15, 2039-2050.	3.1	184
41	Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. Biochemistry (Moscow), 2008, 73, 1300-1316.	1.5	82
42	T-cadherin suppresses angiogenesis in vivo by inhibiting migration of endothelial cells. Angiogenesis, 2007, 10, 183-195.	7.2	55
43	Unique genetic profile of hereditary hemochromatosis in Russians: High frequency of C282Y mutation in population, but not in patients. Blood Cells, Molecules, and Diseases, 2005, 35, 182-188.	1.4	21