Soubantika Palchoudhury

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2728113/soubantika-palchoudhury-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38
papers

1,137
citations

19
h-index

33
g-index

40
ext. papers

4.4
ext. citations

4.72
ext. citations

2,1299
ext. citations

4.72
ext. papers

#	Paper	IF	Citations
38	"How Do We Do This at a Distance?!" A Descriptive Study of Remote Undergraduate Research Programs during COVID-19 <i>CBE Life Sciences Education</i> , 2022 , 21, ar1	3.4	4
37	Bionanomaterials for diagnosis and therapy of SARS-CoV-2 2022 , 469-489		
36	A Dynamic Light Scattering Approach for Detection of Nanomaterials in Tennessee River. <i>Water Resources Research</i> , 2021 , 57, e2020WR028687	5.4	O
35	Behavior of engineered nanoparticles in aquatic environmental samples: Current status and challenges. <i>Science of the Total Environment</i> , 2021 , 793, 148560	10.2	9
34	Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications. <i>Nanoscale Advances</i> , 2020 , 2, 3069-3082	5.1	9
33	Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels. <i>Beilstein Journal of Nanotechnology</i> , 2020 , 11, 296-309	3	2
32	Advances in Smart Nanomaterials: Environmental Perspective. <i>Journal of Nanomaterials</i> , 2020 , 2020, 1-2	3.2	3
31	Modifying Electrical and Magnetic Properties of Single-Walled Carbon Nanotubes by Decorating with Iron Oxide Nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 2611-2616	1.3	12
30	Flexible Supercapacitors: A Materials Perspective. <i>Frontiers in Materials</i> , 2019 , 5,	4	79
29	Integrated experimental and computational approach for nanoparticle flow analysis. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2019 , 383, 1615-1621	2.3	3
28	Increased Plant Growth with Hematite Nanoparticle Fertilizer Drop and Determining Nanoparticle Uptake in Plants Using Multimodal Approach. <i>Journal of Nanomaterials</i> , 2019 , 2019, 1-11	3.2	31
27	Carbon Dots: A Mystic Star in the World of Nanoscience. <i>Journal of Nanomaterials</i> , 2019 , 2019, 1-19	3.2	53
26	Enhanced legume root growth with pre-soaking in FeO nanoparticle fertilizer <i>RSC Advances</i> , 2018 , 8, 24075-24083	3.7	40
25	Pathways for Gold Nucleation and Growth over Protein Cages. <i>Langmuir</i> , 2017 , 33, 5925-5931	4	4
24	Self-assembly of P22 protein cages with polyamidoamine dendrimer and inorganic nanoparticles. <i>Journal of Materials Research</i> , 2017 , 32, 465-472	2.5	8
23	Synthesis and Properties of Magnetic Chalcogenide Nanostructures 2017 , 191-216		
22	Surface spin canting in Fe3O4 and CoFe2O4 nanoparticles probed by high-resolution electron energy loss spectroscopy. <i>Physical Review B</i> , 2017 , 95,	3.3	12

(2011-2017)

21	MoS2 Decorated Carbon Nanofibers as Efficient and Durable Electrocatalyst for Hydrogen Evolution Reaction. <i>Journal of Carbon Research</i> , 2017 , 3, 33	3.3	26
20	A new family of wurtzite-phase Cu2ZnAS4-x and CuZn2AS4 (A = Al, Ga, In) nanocrystals for solar energy conversion applications. <i>Chemical Communications</i> , 2016 , 52, 264-7	5.8	21
19	Layer-Structured Copper Antimony Chalcogenides (CuSbSexS2N): Stable Electrode Materials for Supercapacitors. <i>Chemistry of Materials</i> , 2015 , 27, 379-386	9.6	62
18	Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications. <i>Scientific Reports</i> , 2015 , 5, 15265	4.9	85
17	Methods for Measuring Concentration (Mass, Surface Area and Number) of Nanomaterials. <i>Frontiers of Nanoscience</i> , 2015 , 8, 153-181	0.7	8
16	Layered ternary sulfide CuSbS2 nanoplates for flexible solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13263-13274	13	74
15	New insight into high-temperature driven morphology reliant CoMoO4 flexible supercapacitors. <i>New Journal of Chemistry</i> , 2015 , 39, 6108-6116	3.6	44
14	Selectively self-assembling graphene nanoribbons with shaped iron oxide nanoparticles. <i>RSC Advances</i> , 2014 , 4, 33127-33133	3.7	7
13	Water-Soluble Anisotropic Iron Oxide Nanoparticles: Dextran-Coated Crystalline Nanoplates and Nanoflowers. <i>Particulate Science and Technology</i> , 2014 , 32, 224-233	2	4
12	A facile and cost-effective method for separation of oil-water mixtures using polymer-coated iron oxide nanoparticles. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	89
11	Synthesis and Characterization of Iron Oxide Nanoparticles. <i>Advances in Chemical and Materials Engineering Book Series</i> , 2014 , 89-107	0.2	3
10	DNA Interaction of Pt-Attached Iron Oxide Nanoparticles. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 373	3- <u>3</u> 76	7
9	Controlled synthesis of iron oxide nanoplates and nanoflowers. <i>Chemical Communications</i> , 2012 , 48, 10	4 9% -50)1 ₄₅
8	Make conjugation simple: a facile approach to integrated nanostructures. <i>Langmuir</i> , 2012 , 28, 8767-72	4	39
7	Synthesis and growth mechanism of iron oxide nanowhiskers. <i>Nano Letters</i> , 2011 , 11, 1141-6	11.5	83
6	Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. <i>Langmuir</i> , 2011 , 27, 8990-7	4	169
5	Synthesis of multiple platinum-attached iron oxide nanoparticles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3966		19
4	Synthesis of iron oxide nanoworms. <i>Journal of Applied Physics</i> , 2011 , 109, 07E314	2.5	20

Platinum attachments on iron oxide nanoparticle surfaces. *Journal of Applied Physics*, **2010**, 107, 09B3112.5 19

2	Synthesis and characterization of cellulose acetate-polysulfone blend microfiltration membrane for separation of microbial cells from lactic acid fermentation broth. <i>Desalination</i> , 2009 , 249, 802-808	10.3	44
1	Introduction to Bio-Inspired Hydrogel and Their Application. <i>Advances in Chemical and Materials Engineering Book Series</i> ,133-159	0.2	