
Raymond P Donnelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2727859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pleiotropic Effects of Influenza H1, H3, and B Baloxavir-Resistant Substitutions on Replication, Sensitivity to Baloxavir, and Interferon Expression. Antimicrobial Agents and Chemotherapy, 2022, , e0000922.	3.2	4
2	Effect of Fatty Acid Composition in Polysorbate 80 on the Stability of Therapeutic Protein Formulations. Pharmaceutical Research, 2021, 38, 1961-1975.	3.5	8
3	Adaptation of influenza B virus by serial passage in human airway epithelial cells. Virology, 2020, 549, 68-76.	2.4	2
4	Laninamivir-Interferon Lambda 1 Combination Treatment Promotes Resistance by Influenza A Virus More Rapidly than Laninamivir Alone. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	5
5	The ELISA Detectability and Potency of Pegfilgrastim Decrease in Physiological Conditions: Key Roles for Aggregation and Individual Variability. Scientific Reports, 2020, 10, 2476.	3.3	8
6	Weak Induction of Interferon Expression by Severe Acute Respiratory Syndrome Coronavirus 2 Supports Clinical Trials of Interferon-λ to Treat Early Coronavirus Disease 2019. Clinical Infectious Diseases, 2020, 71, 1410-1412.	5.8	88
7	Effect of influenza H1N1 neuraminidase V116A and I117V mutations on NA activity and sensitivity to NA inhibitors. Antiviral Research, 2019, 169, 104539.	4.1	11
8	Identification and quantification of defective virus genomes in high throughput sequencing data using DVG-profiler, a novel post-sequence alignment processing algorithm. PLoS ONE, 2019, 14, e0216944.	2.5	17
9	Meeting Overview: Interferon Lambda—Disease Impact and Therapeutic Potential. Journal of Interferon and Cytokine Research, 2019, 39, 586-591.	1.2	5
10	A comparison of interferon gene expression induced by influenza A virus infection of human airway epithelial cells from two different donors. Virus Research, 2019, 264, 1-7.	2.2	4
11	Influenza A virus hemagglutinin mutations associated with use of neuraminidase inhibitors correlate with decreased inhibition by anti-influenza antibodies. Virology Journal, 2019, 16, 149.	3.4	19
12	Differential Responses by Human Respiratory Epithelial Cell Lines to Respiratory Syncytial Virus Reflect Distinct Patterns of Infection Control. Journal of Virology, 2018, 92, .	3.4	44
13	The use of plant lectins to regulate H1N1 influenza A virus receptor binding activity. PLoS ONE, 2018, 13, e0195525.	2.5	12
14	IFN-λ4 Attenuates Antiviral Responses by Enhancing Negative Regulation of IFN Signaling. Journal of Immunology, 2017, 199, 3808-3820.	0.8	55
15	Impact of Influenza A Virus Infection on the Proteomes of Human Bronchoepithelial Cells from Different Donors. Journal of Proteome Research, 2017, 16, 3287-3297.	3.7	21
16	Influenza virus NS1 protein mutations at position 171 impact innate interferon responses by respiratory epithelial cells. Virus Research, 2017, 240, 81-86.	2.2	11
17	Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses. Journal of Virology, 2017, 91, .	3.4	14
18	Generation and characterization of interferon-lambda 1-resistant H1N1 influenza A viruses. PLoS ONE, 2017. 12. e0181999.	2.5	20

#	Article	IF	CITATIONS
19	The Interleukin-13 Receptor-α1 Chain Is Essential for Induction of the Alternative Macrophage Activation Pathway by IL-13 but Not IL-4. Journal of Innate Immunity, 2015, 7, 494-505.	3.8	24
20	Respiratory Syncytial Virus-Induced Host IFN Signaling Differs Between A549 and BEAS-2B Epithelial Cell Lines. Journal of Allergy and Clinical Immunology, 2015, 135, AB9.	2.9	2
21	An essential role for IFN-β in the induction of IFN-stimulated gene expression by LPS in macrophages. Journal of Leukocyte Biology, 2014, 96, 591-600.	3.3	93
22	IFN-λ4: The Paradoxical New Member of the Interferon Lambda Family. Journal of Interferon and Cytokine Research, 2014, 34, 829-838.	1.2	130
23	In vitro anti-influenza A activity of interferon (IFN)-λ1 combined with IFN-β or oseltamivir carboxylate. Antiviral Research, 2014, 111, 112-120.	4.1	21
24	182. Cytokine, 2013, 63, 286.	3.2	1
25	A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nature Genetics, 2013, 45, 164-171.	21.4	843
26	Distinct and overlapping genomic profiles and antiviral effects of Interferonâ€î» and â€î± on HCVâ€infected and noninfected hepatoma cells. Journal of Viral Hepatitis, 2012, 19, 843-853.	2.0	48
27	Type III IFNs Are Produced by and Stimulate Human Plasmacytoid Dendritic Cells. Journal of Immunology, 2012, 189, 2735-2745.	0.8	160
28	IL-4 Engagement of the Type I IL-4 Receptor Complex Enhances Mouse Eosinophil Migration to Eotaxin-1 In Vitro. PLoS ONE, 2012, 7, e39673.	2.5	27
29	Interferon-lambda (IFN-λ) induces signal transduction and gene expression in human hepatocytes, but not in lymphocytes or monocytes. Journal of Leukocyte Biology, 2012, 93, 377-385.	3.3	92
30	Interferon-lambda and therapy for chronic hepatitis C virus infection. Trends in Immunology, 2011, 32, 443-450.	6.8	65
31	A novel role for IL-22R1 as a driver of inflammation. Blood, 2011, 117, 575-584.	1.4	64
32	Abstract 3751: Expression analysis of the IL28A, IL28B, IL29 and IL28L genes in primary human peripheral blood mononuclear cells and hepatocytes: Effects of activation mode, time-course and genotypes. , 2011, , .		0
33	Resistance to IFN-α–Induced Apoptosis Is Linked to a Loss of STAT2. Molecular Cancer Research, 2010, 8, 80-92.	3.4	38
34	PS1-79 COmparative analysis of responsiveness to IFN-α and IFN-λ by normal human bronchial epithelial cells and hepatocytes. Cytokine, 2010, 52, 34.	3.2	0
35	PS3-50 Differential transcriptosome profiles and antiviral effect of interferon-λ and interferon-α on HCV-infected and uninfected hepatoma cells. Cytokine, 2010, 52, 92.	3.2	0
36	Interleukin-26: An IL-10-related cytokine produced by Th17 cells. Cytokine and Growth Factor Reviews, 2010, 21, 393-401.	7.2	113

#	Article	IF	CITATIONS
37	Interferon-Lambda: A New Addition to an Old Family. Journal of Interferon and Cytokine Research, 2010, 30, 555-564.	1.2	355
38	Oncostatin M Regulates Secretoglobin 3A1 and 3A2 Expression in a Bidirectional Manner. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 620-630.	2.9	5
39	Hurdles and Leaps for Protein Therapeutics. Annals of the New York Academy of Sciences, 2009, 1182, 146-160.	3.8	3
40	An Overview of Cytokines and Cytokine Antagonists as Therapeutic Agents. Annals of the New York Academy of Sciences, 2009, 1182, 1-13.	3.8	29
41	IFN-Î ³ down-regulates Secretoglobin 3A1 gene expression. Biochemical and Biophysical Research Communications, 2009, 379, 964-968.	2.1	6
42	Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor α1 chain. Nature Immunology, 2008, 9, 25-33.	14.5	161
43	W1231 Interferon-Beta for Ulcerative Colitis: Clinical Remission Is Associated with Interleukin-13 Inhibition. Gastroenterology, 2008, 134, A-660.	1.3	0
44	IFN-α and IFN-λ differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biology and Therapy, 2008, 7, 1109-1115.	3.4	150
45	Tuning sensitivity to IL-4 and IL-13: differential expression of IL-4Rα, IL-13Rα1, and γc regulates relative cytokine sensitivity. Journal of Experimental Medicine, 2008, 205, 2595-2608.	8.5	135
46	Unique functions of the type II interleukin 4 receptor revealed in mice lacking the interleukin 13 receptor α1 chain. FASEB Journal, 2008, 22, 674.9.	0.5	1
47	Plasmacytoid Dendritic Cells both produce interferonâ€î» and respond to interferonâ€î» stimulation. FASEB Journal, 2008, 22, 1070.23.	0.5	0
48	A Mutation in the SH2 Domain of STAT2 Prolongs Tyrosine Phosphorylation of STAT1 and Promotes Type I IFN-induced Apoptosis. Molecular Biology of the Cell, 2007, 18, 2455-2462.	2.1	28
49	Suppressor of cytokine signaling-1 is an IL-4-inducible gene in macrophages and feedback inhibits IL-4 signaling. Genes and Immunity, 2007, 8, 21-27.	4.1	73
50	Type III Interferons: The Interferon-λ Family. , 2006, , 141-163.		6
51	General Nature of the STAT3-Activated Anti-Inflammatory Response. Journal of Immunology, 2006, 177, 7880-7888.	0.8	197
52	Characterization of the Mouse IFN-λ Ligand-Receptor System: IFN-λs Exhibit Antitumor Activity against B16 Melanoma. Cancer Research, 2006, 66, 4468-4477.	0.9	229
53	Alpha and Lambda Interferon Together Mediate Suppression of CD4 T Cells Induced by Respiratory Syncytial Virus. Journal of Virology, 2006, 80, 5032-5040.	3.4	101
54	Conformational Changes Mediate Interleukin-10 Receptor 2 (IL-10R2) Binding to IL-10 and Assembly of the Signaling Complex. Journal of Biological Chemistry, 2006, 281, 35088-35096.	3.4	107

#	Article	IF	CITATIONS
55	The IFN-λ Family (IL-28/29). Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2006, 5, 279-285.	1.1	1
56	Induction of Uteroglobin-Related Protein 2 (Ugrp2) Gene Expression by the Th2 Cytokines IL-4 and IL-13. Journal of Immunology, 2005, 175, 5708-5715.	0.8	18
57	The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. Journal of Leukocyte Biology, 2004, 76, 314-321.	3.3	250
58	Cutting Edge: IL-26 Signals through a Novel Receptor Complex Composed of IL-20 Receptor 1 and IL-10 Receptor 2. Journal of Immunology, 2004, 172, 2006-2010.	0.8	156
59	Interleukin-10 Induces Uteroglobin-related Protein (UGRP) 1 Gene Expression in Lung Epithelial Cells through Homeodomain Transcription Factor T/EBP/NKX2.1. Journal of Biological Chemistry, 2004, 279, 54358-54368.	3.4	23
60	Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses. International Immunopharmacology, 2004, 4, 615-626.	3.8	126
61	IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunology, 2003, 4, 69-77.	14.5	1,670
62	Regulation of the Dephosphorylation of Stat6. Journal of Biological Chemistry, 2003, 278, 3903-3911.	3.4	68
63	Leishmania donovani - Induced Expression of Suppressor of Cytokine Signaling 3 in Human Macrophages: a Novel Mechanism for Intracellular Parasite Suppression of Activation. Infection and Immunity, 2003, 71, 2095-2101.	2.2	78
64	Differential Regulation of IL-12 and IL-10 Gene Expression in Macrophages by the Basic Leucine Zipper Transcription Factor c-Maf Fibrosarcoma. Journal of Immunology, 2002, 169, 5715-5725.	0.8	107
65	Identification of the Functional Interleukin-22 (IL-22) Receptor Complex. Journal of Biological Chemistry, 2001, 276, 2725-2732.	3.4	353
66	Identification, Cloning, and Characterization of a Novel Soluble Receptor That Binds IL-22 and Neutralizes Its Activity. Journal of Immunology, 2001, 166, 7096-7103.	0.8	241
67	Cloning, expression and initial characterisation of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes and Immunity, 2000, 1, 442-450.	4.1	281
68	Inhibition of IL-12 Production in Human Monocyte-Derived Macrophages by TNF. Journal of Immunology, 2000, 164, 1722-1729.	0.8	95
69	Interleukin-12 Differentially Regulates Expression of IFN-γ and Interleukin-2 in Human T Lymphoblasts. Journal of Interferon and Cytokine Research, 2000, 20, 897-905.	1.2	12
70	Differential responses of human monocytes and macrophages to IL-4 and IL-13. Journal of Leukocyte Biology, 1999, 66, 575-578.	3.3	81
71	Interleukin-10 Inhibits Expression of Both Interferon – and Interferon γ– Induced Genes by Suppressing Tyrosine Phosphorylation of STAT1. Blood, 1999, 93, 1456-1463.	1.4	358
72	Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10800-10805.	7.1	161

#	Article	IF	CITATIONS
73	Diminished responses to IL-13 by human monocytes differentiatedin vitro: role of the IL-13Rα1 chain and STAT6. European Journal of Immunology, 1999, 29, 2087-2097.	2.9	16
74	The Interleukin-10 Signal Transduction Pathway and Regulation of Gene Expression in Mononuclear Phagocytes. Journal of Interferon and Cytokine Research, 1999, 19, 563-573.	1.2	357
75	Inhibition of IL-4-inducible gene expression in human monocytes by type I and type II interferons. Journal of Leukocyte Biology, 1999, 65, 307-312.	3.3	60
76	Interleukin-10 Inhibits Interferon-γ–Induced Intercellular Adhesion Molecule-1 Gene Transcription in Human Monocytes. Blood, 1997, 89, 4461-4469.	1.4	81
77	Interleukin-10 Upregulates Tumor Necrosis Factor Receptor Type-II (p75) Gene Expression in Endotoxin-Stimulated Human Monocytes. Blood, 1997, 90, 4162-4171.	1.4	74
78	IFN-Î ³ priming of monocytes enhances LPS-induced TNF production by augmenting both transcription and mRNA stability. Cytokine, 1995, 7, 427-435.	3.2	97
79	Induction of Immunosuppressive B-Lymphocytes with Components of Candida Albicans. Advances in Experimental Medicine and Biology, 1988, 239, 367-378.	1.6	8
80	Kinetic analysis of the immunopotentiating effect of the hypoxanthine analogue, NPT-15392, on the interleukin-2 production potential of human lymphocytes. International Journal of Immunopharmacology, 1986, 8, 621-627.	1.1	1
81	Isoprinosine effects on interleukin-1 production in acquired immune deficiency syndrome (AIDS). International Journal of Immunopharmacology, 1986, 8, 437-441.	1.1	8
82	Inhibition of interleukin-2-induced T-cell proliferation by sera from patients with the acquired immune deficiency syndrome. Journal of Clinical Immunology, 1986, 6, 92-101.	3.8	11
83	Effect of isoprinosine on sialylation of interleukin-2. Immunology Letters, 1986, 12, 195-200.	2.5	5
84	Suppression of B-cell and T-cell responses by the prostaglandin-induced T-cell-derived suppressors (PITS) — III. Production of PITSβ factors from T-cell hybridomas. International Journal of Immunopharmacology, 1985, 7, 153-156.	1.1	5
85	Suppression of B-cell and T-cell responses by the prostaglandin-induced T-cell-derived suppressor (PITS). Cellular Immunology, 1984, 87, 703-707.	3.0	17
86	Inhibitors of prostaglandin synthesis block the induction of staphylococcal enterotoxin B-activated T-suppressor cells. Cellular Immunology, 1983, 81, 61-70.	3.0	8
87	Dietary Ascorbic Acid and Resistance to Experimental Renal Candidiasis. Journal of Nutrition, 1983, 113, 178-183.	2.9	8
88	Immunosuppression induced by staphylococcal enterotoxin B. Cellular Immunology, 1982, 72, 166-177.	3.0	50
89	Howard A. Young: Always Willing to Lend a Helping Hand. Journal of Interferon and Cytokine Research, 0, , .	1.2	0