Michel Monod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2727804/publications.pdf

Version: 2024-02-01

86 papers

6,823 citations

43 h-index 80 g-index

88 all docs 88 docs citations

88 times ranked 5143 citing authors

#	Article	IF	CITATIONS
1	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	13.7	1,272
2	Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology (United Kingdom), 1997, 143, 405-416.	0.7	565
3	Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes. Mycopathologia, 2017, 182, 5-31.	1.3	447
4	Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	215
5	Comparative Genome Analysis of <i>Trichophyton rubrum</i> and Related Dermatophytes Reveals Candidate Genes Involved in Infection. MBio, 2012, 3, e00259-12.	1.8	211
6	Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biology, 2011, 12, R7.	13.9	181
7	Secreted Proteases from Dermatophytes. Mycopathologia, 2008, 166, 285-294.	1.3	174
8	Cloning and disruption of the gene encoding an extracellular metalloprotease of Aspergillus fumigatus. Molecular Microbiology, 1994, 14, 917-928.	1.2	139
9	Alarming Indiaâ€wide phenomenon of antifungal resistance in dermatophytes: A multicentre study. Mycoses, 2020, 63, 717-728.	1.8	122
10	Biochemical and Antigenic Characterization of a New Dipeptidyl-Peptidase Isolated from Aspergillus fumigatus. Journal of Biological Chemistry, 1997, 272, 6238-6244.	1.6	114
11	Secreted Metalloprotease Gene Family of Microsporum canis. Infection and Immunity, 2002, 70, 5676-5683.	1.0	110
12	Detection of metabolite induction in fungal co-cultures on solid media by high-throughput differential ultra-high pressure liquid chromatography–time-of-flight mass spectrometry fingerprinting. Journal of Chromatography A, 2013, 1292, 219-228.	1.8	109
13	Keratin Degradation by Dermatophytes Relies on Cysteine Dioxygenase and a Sulfite Efflux Pump. Journal of Investigative Dermatology, 2013, 133, 1550-1555.	0.3	108
14	Identification of Dermatophyte Species by 28S Ribosomal DNA Sequencing with a Commercial Kit. Journal of Clinical Microbiology, 2003, 41, 826-830.	1.8	106
15	Pets as the main source of two zoonotic species of the <i>Trichophyton mentagrophytes</i> complex in Switzerland, <i>Arthroderma vanbreuseghemii</i> and <i>Arthroderma benhamiae</i> Dermatology, 2009, 20, 13-18.	0.4	106
16	Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology (United Kingdom), 2004, 150, 301-310.	0.7	103
17	Nucleotide sequence of a genomic and a cDNA clone encoding an extracellular alkaline protease of Aspergillus fumigatus. FEMS Microbiology Letters, 1992, 92, 163-168.	0.7	102
18	<i>De Novo</i> Production of Metabolites by Fungal Co-culture of <i>Trichophyton rubrum</i> and <i>Bionectria ochroleuca</i> Journal of Natural Products, 2013, 76, 1157-1165.	1.5	102

#	Article	lF	Citations
19	Secreted subtilisin gene family in Trichophyton rubrum. Gene, 2004, 339, 79-88.	1.0	98
20	Diagnosis of Dermatophytosis Using Molecular Biology. Mycopathologia, 2017, 182, 193-202.	1.3	87
21	Nucleotide sequence of a genomic and a cDNA clone encoding an extracellular alkaline protease of Aspergillus fumigatus. FEMS Microbiology Letters, 1992, 71, 163-8.	0.7	84
22	Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology (United Kingdom), 2010, 156, 884-895.	0.7	82
23	Molecular analysis and mating behaviour of the Trichophyton mentagrophytes species complex. International Journal of Medical Microbiology, 2011, 301, 260-266.	1.5	78
24	Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology (United Kingdom), 2005, 151, 145-155.	0.7	74
25	Spread of Terbinafine-Resistant Trichophyton mentagrophytes Type VIII (India) in Germany–"The Tip of the Iceberg?― Journal of Fungi (Basel, Switzerland), 2020, 6, 207.	1.5	73
26	The dermatophyte species Arthroderma benhamiae: intraspecies variability and mating behaviour. Journal of Medical Microbiology, 2013, 62, 377-385.	0.7	70
27	Sedolisins, a New Class of Secreted Proteases from Aspergillus fumigatus with Endoprotease or Tripeptidyl-Peptidase Activity at Acidic pHs. Applied and Environmental Microbiology, 2006, 72, 1739-1748.	1.4	67
28	Onychomycosis Insensitive to Systemic Terbinafine and Azole Treatments Reveals Non-Dermatophyte Moulds as Infectious Agents. Dermatology, 2010, 220, 164-168.	0.9	67
29	Trichophyton rubrum Azole Resistance Mediated by a New ABC Transporter, TruMDR3. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	67
30	First Report of <i>Arthroderma benhamiae</i> in Switzerland. Dermatology, 2004, 208, 244-250.	0.9	66
31	Gene Expression Profiling in the Human Pathogenic Dermatophyte <i>Trichophyton rubrum</i> during Growth on Proteins. Eukaryotic Cell, 2009, 8, 241-250.	3.4	65
32	Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology (United Kingdom), 2007, 153, 905-913.	0.7	64
33	Isolation of a Microsporum canis Gene Family Encoding Three Subtilisin-Like Proteases Expressed in vivo. Journal of Investigative Dermatology, 2002, 119, 830-835.	0.3	63
34	Survey of Dermatophyte Infections in the Lausanne Area (Switzerland). Dermatology, 2002, 205, 201-203.	0.9	61
35	Fast and reliable PCR/sequencing/RFLP assay for identification of fungi in onychomycoses. Journal of Medical Microbiology, 2006, 55, 1211-1216.	0.7	58
36	New insights in dermatophyte research. Medical Mycology, 2018, 56, S2-S9.	0.3	55

#	Article	IF	CITATIONS
37	<i>Aspergillus</i> Protein Degradation Pathways with Different Secreted Protease Sets at Neutral and Acidic pH. Journal of Proteome Research, 2010, 9, 3511-3519.	1.8	54
38	Efficacious Treatment of Non-Dermatophyte Mould Onychomycosis with Topical Amphotericin B. Dermatology, 2011, 223, 289-292.	0.9	52
39	Comprehensive Analysis of Proteins Secreted by <i>Trichophyton rubrum</i> and <i>Trichophyton violaceum</i> under <i>in Vitro</i> Conditions. Journal of Proteome Research, 2007, 6, 3081-3092.	1.8	50
40	Acid Proteinase Secreted by Candida Tropicalis: Functional Analysis of Preproregion Cleavages in C. Tropicalis and Saccharomyces Cerevisiae. Microbiology (United Kingdom), 1996, 142, 493-503.	0.7	48
41	Closely related dermatophyte species produce different patterns of secreted proteins. FEMS Microbiology Letters, 2007, 267, 95-101.	0.7	46
42	Trichophyton rubrum secreted and membrane-associated carboxypeptidases. International Journal of Medical Microbiology, 2008, 298, 669-682.	1.5	46
43	Identification of Infectious Agents in Onychomycoses by PCR-Terminal Restriction Fragment Length Polymorphism. Journal of Clinical Microbiology, 2012, 50, 553-561.	1.8	46
44	Molecular cloning and sequencing of the gene encoding an extracellular aspartic proteinase fromAspergillus fumigatus. FEMS Microbiology Letters, 1995, 130, 69-74.	0.7	44
45	Characterization of the Prolyl Dipeptidyl Peptidase Gene (<i>dppIV</i>) from the Koji Mold <i>Aspergillus oryzae</i> . Applied and Environmental Microbiology, 1998, 64, 4809-4815.	1.4	43
46	Identification of novel secreted proteases during extracellular proteolysis by dermatophytes at acidic pH. Proteomics, 2011, 11, 4422-4433.	1.3	42
47	Recent Findings in Onychomycosis and Their Application for Appropriate Treatment. Journal of Fungi (Basel, Switzerland), 2019, 5, 20.	1.5	41
48	Molecular characterization and influence on fungal development of ALP2, a novel serine proteinase from Aspergillus fumigatus. International Journal of Medical Microbiology, 2000, 290, 549-558.	1.5	40
49	Genetic advances in dermatophytes. FEMS Microbiology Letters, 2011, 320, 79-86.	0.7	40
50	Multi-well fungal co-culture for de novo metabolite-induction in time-series studies based on untargeted metabolomics. Molecular BioSystems, 2014, 10, 2289-2298.	2.9	36
51	Recombinant expression and antigenic properties of a 31.5-kDa keratinolytic subtilisin-like serine protease fromMicrosporum canis. FEMS Immunology and Medical Microbiology, 2003, 38, 29-34.	2.7	33
52	Skin Fungi from Colonization to Infection. Microbiology Spectrum, 2017, 5, .	1.2	33
53	RNA Sequencing-Based Genome Reannotation of the Dermatophyte <i>Arthroderma benhamiae</i> and Characterization of Its Secretome and Whole Gene Expression Profile during Infection. MSystems, 2016, 1, .	1.7	31
54	Which Fungus Originally was Trichophyton mentagrophytes? Historical Review and Illustration by a Clinical Case. Mycopathologia, 2015, 180, 1-5.	1.3	26

#	Article	IF	Citations
55	Sub6 (Tri r 2), an Onychomycosis Marker Revealed by Proteomics Analysis of Trichophyton rubrum Secreted Proteins in Patient Nail Samples. Journal of Investigative Dermatology, 2016, 136, 331-333.	0.3	26
56	Epidemiology of Dermatophytoses in Switzerland According to a Survey of Dermatophytes Isolated in Lausanne between 2001 and 2018. Journal of Fungi (Basel, Switzerland), 2020, 6, 95.	1.5	26
57	Humoral and cellular immune response to aMicrosporumcanisrecombinant keratinolytic metalloprotease (r-MEP3) in experimentally infected guinea pigs. Medical Mycology, 2003, 41, 495-501.	0.3	25
58	Secretion of an Endogenous Subtilisin by <i>Pichia pastoris</i> Strains GS115 and KM71. Applied and Environmental Microbiology, 2010, 76, 4269-4276.	1.4	25
59	Extended bottom-up proteomics with secreted aspartic protease Sap9. Journal of Proteomics, 2014, 110, 20-31.	1.2	25
60	Gene Amplification of $\langle i \rangle$ CYP51B $\langle i \rangle$: a New Mechanism of Resistance to Azole Compounds in Trichophyton indotineae. Antimicrobial Agents and Chemotherapy, 2022, 66, e0005922.	1.4	24
61	Production of Fusaric Acid by Fusarium spp. in Pure Culture and in Solid Medium Co-Cultures. Molecules, 2016, 21, 370.	1.7	23
62	A functional and structural study of the major metalloprotease secreted by the pathogenic fungus <i>Aspergillus fumigatus</i> . Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1946-1957.	2.5	22
63	Occurrence of Arthroderma benhamiae Genotype in Japan. Mycopathologia, 2015, 179, 219-223.	1.3	20
64	Production of <i>Trichophyton rubrum</i> microspores in large quantities and its application to evaluate amorolfine/azole compound interactions in vitro. Mycoses, 2017, 60, 581-586.	1.8	20
65	Aspergillus fumigatus Secreted Proteases. , 0, , 87-106.		18
66	The transcriptional regulators SteA and StuA contribute to keratin degradation and sexual reproduction of the dermatophyte Arthroderma benhamiae. Current Genetics, 2017, 63, 103-116.	0.8	16
67	Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin. Microbiology (United Kingdom), 2015, 161, 2277-2288.	0.7	15
68	Oral Terbinafine and Itraconazole Treatments against Dermatophytes Appear Not to Favor the Establishment of <i>Fusarium</i> spp. in Nail. Dermatology, 2014, 228, 225-232.	0.9	14
69	Flippase (FLP) recombinase-mediated marker recycling in the dermatophyte Arthroderma vanbreuseghemii. Microbiology (United Kingdom), 2014, 160, 2122-2135.	0.7	14
70	Secreted glutamic protease rescues aspartic protease Pep deficiency in Aspergillus fumigatus during growth in acidic protein medium. Microbiology (United Kingdom), 2011, 157, 1541-1550.	0.7	13
71	Development of an Enzyme-Linked Immunosorbent Assay for Serodiagnosis of Ringworm Infection in Cattle. Vaccine Journal, 2013, 20, 1150-1154.	3.2	13
72	Epizootic and epidemic dermatophytose outbreaks caused by <i>Trichophyton mentagrophytes</i> from rabbits in Portugal, 2015. Mycoses, 2016, 59, 668-673.	1.8	13

#	Article	IF	CITATIONS
73	An outbreak of <i>Arthroderma vanbreuseghemii</i> dermatophytosis at a veterinary school associated with an infected horse. Mycoses, 2015, 58, 233-238.	1.8	12
74	Detection of <i>Trichophyton rubrum</i> and <i>Trichophyton interdigitale</i> âin onychomycosis using monoclonal antibodies against Sub6 (Tri r 2). Mycoses, 2019, 62, 32-40.	1.8	12
7 5	Tinea manuum caused by <i><scp>T</scp>richophyton erinacei</i> : first report in <scp>S</scp> witzerland. International Journal of Dermatology, 2015, 54, 959-960.	0.5	11
76	Itraconazole resistance of <i>Trichophyton rubrum</i> mediated by the ABC transporter TruMDR2. Mycoses, 2021, 64, 936-946.	1.8	10
77	Potency and stability of liposomal Amphotericin B formulated for topical management of Aspergillus spp. infections in burn patients. Burns Open, 2020, 4, 110-116.	0.2	9
78	Common peptide epitopes induce cross-reactivity in hypersensitivity pneumonitis serodiagnosis. Journal of Allergy and Clinical Immunology, 2016, 138, 1738-1741.e6.	1.5	8
79	AoS28D, a proline-Xaa carboxypeptidase secreted by Aspergillus oryzae. Applied Microbiology and Biotechnology, 2017, 101, 4129-4137.	1.7	8
80	MFS1, a Pleiotropic Transporter in Dermatophytes That Plays a Key Role in Their Intrinsic Resistance to Chloramphenicol and Fluconazole. Journal of Fungi (Basel, Switzerland), 2021, 7, 542.	1.5	8
81	Terbinafine and Itraconazole Resistance in Dermatophytes., 2021,, 415-429.		6
82	Skin Fungi from Colonization to Infection., 0,, 855-871.		6
83	Récente révision des espèces de dermatophytes et de leur nomenclature. Revue Medicale Suisse, 2017, 13, 703-708.	0.0	5
84	Dipeptidyl-peptidases IV and V of Aspergillus. , 2013, , 3392-3394.		2
85	Simultaneous Delivery of Econazole, Terbinafine and Amorolfine with Improved Cutaneous Bioavailability: A Novel Micelle-Based Antifungal "Tri-Therapy― Pharmaceutics, 2022, 14, 271.	2.0	2
86	Dermatophytes and Dermatophytosis. , 2022, , 397-407.		2