Yuying Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2727767/publications.pdf Version: 2024-02-01

ΥΠΛΙΝΟ 2ΗΛΟ

#	Article	IF	CITATIONS
1	Anti-HMGCR myopathy overlaps with dermatomyositis-like rash: a distinct subtype of idiopathic inflammatory myopathy. Journal of Neurology, 2022, 269, 280-293.	3.6	9
2	Clinical, pathological and genetic features and follow-up of 110 patients with late-onset MADD: a single-center retrospective study. Human Molecular Genetics, 2022, 31, 1115-1129.	2.9	10
3	Hypothalamic subregion abnormalities are related to body mass index in patients with sporadic amyotrophic lateral sclerosis. Journal of Neurology, 2022, 269, 2980-2988.	3.6	11
4	Bezafibrate Rescues Mitochondrial Encephalopathy in Mice via Induction of Daily Torpor and Hypometabolic State. Neurotherapeutics, 2022, 19, 994-1006.	4.4	2
5	Clinical and diagnostic features of antiâ€neurofascinâ€155 antibodyâ€positive neuropathy in Han Chinese. Annals of Clinical and Translational Neurology, 2022, 9, 695-706.	3.7	7
6	A mitochondrial myopathy-associated tRNASer(UCN) 7453G>A mutation alters tRNA metabolism and mitochondrial function. Mitochondrion, 2021, 57, 1-8.	3.4	7
7	Leber hereditary optic neuropathy and dystonia overlapping mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes due to m.14459G>A mutation. Neurological Sciences, 2021, 42, 5123-5130.	1.9	1
8	Late-Onset Leukodystrophy Mimicking Hereditary Spastic Paraplegia without Diffuse Leukodystrophy on Neuroimaging. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 1451-1458.	2.2	5
9	Juvenile idiopathic inflammatory myopathies with antiâ€3â€hydroxyâ€3â€methylglutarylâ€coenzyme A reductase antibodies in a Chinese cohort. CNS Neuroscience and Therapeutics, 2021, 27, 1041-1047.	3.9	4
10	Novel biallelic mutations in POLG gene: large deletion and missense variant associated with PEO. Neurological Sciences, 2021, 42, 4271-4280.	1.9	2
11	A novel nonsense variant in MT-CO3 causes MELAS syndrome. Neuromuscular Disorders, 2021, 31, 558-565.	0.6	6
12	Hippocampal subfield and anterior-posterior segment volumes in patients with sporadic amyotrophic lateral sclerosis. Neurolmage: Clinical, 2021, 32, 102816.	2.7	6
13	A novel m.11406ÂTÂ>ÂA mutation in mitochondrial ND4 gene causes MELAS syndrome. Mitochondrion, 2020, 54, 57-64.	3.4	5
14	<p>Reversible Neuropsychiatric Disturbances Caused by Nitrous Oxide Toxicity: Clinical, Imaging and Electrophysiological Profiles of 21 Patients with 6–12 Months Follow-up</p> . Neuropsychiatric Disease and Treatment, 2020, Volume 16, 2817-2825.	2.2	14
15	Cerebrotendinous xanthomatosis with peripheral neuropathy: a clinical and neurophysiological study in Chinese population. Annals of Translational Medicine, 2020, 8, 1372-1372.	1.7	5
16	Accuracy of FGFâ€21 and GDFâ€15 for the diagnosis of mitochondrial disorders: A metaâ€analysis. Annals of Clinical and Translational Neurology, 2020, 7, 1204-1213.	3.7	16
17	"Myo-neuropathy―is commonly associated with mitochondrial tRNALysine mutation. Journal of Neurology, 2020, 267, 3319-3328.	3.6	5
18	Mitochondrial encephalopathy Due to a Novel Pathogenic Mitochondrial tRNA Gln m.4349C>T Variant. Annals of Clinical and Translational Neurology, 2020, 7, 980-991.	3.7	3

YUYING ZHAO

#	Article	IF	CITATIONS
19	Gasdermine E-Dependent Mitochondrial Pyroptotic Pathway in Dermatomyositis: A Possible Mechanism of Perifascicular Atrophy. Journal of Neuropathology and Experimental Neurology, 2020, 79, 551-561.	1.7	7
20	CMAP decrement by low-frequency repetitive nerve stimulation in different hand muscles of ALS patients. Neurological Sciences, 2019, 40, 2609-2615.	1.9	5
21	The clinical and histopathological features of idiopathic inflammatory myopathies with asymmetric muscle involvement. Journal of Clinical Neuroscience, 2019, 65, 46-53.	1.5	5
22	Characteristics of Pompe disease in China: a report from the Pompe registry. Orphanet Journal of Rare Diseases, 2019, 14, 78.	2.7	14
23	Idiopathic inflammatory myopathies with anti-mitochondrial antibodies: Clinical features and treatment outcomes in a Chinese cohort. Neuromuscular Disorders, 2019, 29, 5-13.	0.6	23
24	Revisiting Pathological Classification Criteria for Adult Idiopathic Inflammatory Myopathies: In-Depth Analysis of Muscle Biopsies and Correlation Between Pathological Diagnosis and Clinical Manifestations. Journal of Neuropathology and Experimental Neurology, 2018, 77, 395-404.	1.7	8
25	<scp><i>ETFDH</i></scp> Mutations and Flavin Adenine Dinucleotide Homeostasis Disturbance Are Essential for Developing Riboflavinâ€Responsive Multiple Acyl–Coenzyme <scp>A</scp> Dehydrogenation Deficiency. Annals of Neurology, 2018, 84, 659-673.	5.3	23
26	Comprehensive genetic characteristics of dystrophinopathies in China. Orphanet Journal of Rare Diseases, 2018, 13, 109.	2.7	29
27	Biallelic Mutations in MYORG Cause Autosomal Recessive Primary Familial Brain Calcification. Neuron, 2018, 98, 1116-1123.e5.	8.1	111
28	Adult-onset Krabbe disease in two generations of a Chinese family. Annals of Translational Medicine, 2018, 6, 174-174.	1.7	17
29	Identification of miRNA, IncRNA and mRNA-associated ceRNA networks and potential biomarker for MELAS with mitochondrial DNA A3243G mutation. Scientific Reports, 2017, 7, 41639.	3.3	38
30	Growth Differentiation Factor 15 Is a Novel Diagnostic Biomarker of Mitochondrial Diseases. Molecular Neurobiology, 2017, 54, 8110-8116.	4.0	42
31	Late-onset Pompe disease with complicated intracranial aneurysm: a Chinese case report. Neuropsychiatric Disease and Treatment, 2016, 12, 713.	2.2	15
32	Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR–YY1–PGC1α pathway. Free Radical Biology and Medicine, 2015, 84, 161-170.	2.9	71