
Ina Dobrinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2727736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Role for Exchange of Extracellular Vesicles in Porcine Spermatogonial Co-Culture. International Journal of Molecular Sciences, 2022, 23, 4535.	4.1	7
2	Regulation of Cell Types Within Testicular Organoids. Endocrinology, 2021, 162, .	2.8	5
3	Metabolic Requirements for Spermatogonial Stem Cell Establishment and Maintenance In Vivo and In Vitro. International Journal of Molecular Sciences, 2021, 22, 1998.	4.1	11
4	Unique metabolic phenotype and its transition during maturation of juvenile male germ cells. FASEB Journal, 2021, 35, e21513.	0.5	19
5	PNKP is required for maintaining the integrity of progenitor cell populations in adult mice. Life Science Alliance, 2021, 4, e202000790.	2.8	3
6	Loss of Ubiquitin Carboxy-Terminal Hydrolase L1 Impairs Long-Term Differentiation Competence and Metabolic Regulation in Murine Spermatogonial Stem Cells. Cells, 2021, 10, 2265.	4.1	12
7	The Proliferation of Pre-Pubertal Porcine Spermatogonia in Stirred Suspension Bioreactors Is Partially Mediated by the Wnt/β-Catenin Pathway. International Journal of Molecular Sciences, 2021, 22, 13549.	4.1	3
8	Testicular organoids to study cell–cell interactions in the mammalian testis. Andrology, 2020, 8, 835-841.	3.5	18
9	A reduction of primary cilia but not hedgehog signaling disrupts morphogenesis in testicular organoids. Cell and Tissue Research, 2020, 380, 191-200.	2.9	12
10	Development and function of smooth muscle cells is modulated by Hic1 in mouse testis. Development (Cambridge), 2020, 147, .	2.5	12
11	Transcriptional Profiling of the Adult Hair Follicle Mesenchyme Reveals R-spondin as a Novel Regulator of Dermal Progenitor Function. IScience, 2020, 23, 101019.	4.1	31
12	Targeted Gene Editing in Porcine Spermatogonia. Frontiers in Genetics, 2020, 11, 627673.	2.3	4
13	Stirred Suspension Bioreactor Culture of Porcine Induced Pluripotent Stem Cells. Stem Cells and Development, 2019, 28, 1264-1275.	2.1	13
14	Three-dimensional testicular organoids as novel in vitro models of testicular biology and toxicology. Environmental Epigenetics, 2019, 5, dvz011.	1.8	28
15	Generation of Porcine Testicular Organoids with Testis Specific Architecture using Microwell Culture. Journal of Visualized Experiments, 2019, , .	0.3	17
16	Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science, 2019, 363, 1314-1319.	12.6	217
17	Formation of organotypic testicular organoids in microwell cultureâ€. Biology of Reproduction, 2019, 100, 1648-1660.	2.7	74
18	Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25677-25687.	7.1	82

#	Article	IF	CITATIONS
19	TALENâ€mediated gene targeting in porcine spermatogonia. Molecular Reproduction and Development, 2018, 85, 250-261.	2.0	17
20	Germ Cell Transplantation and Neospermatogenesis. , 2018, , 361-375.		3
21	Regulation of Spermatogonial Stem Cell Function. , 2018, , 100-104.		0
22	Xenografting of isolated equine (<i>Equus caballus</i>) testis cells results in <i>de novo</i> morphogenesis of seminiferous tubules but not spermatogenesis. Andrology, 2017, 5, 336-346.	3.5	3
23	Application of Spermatogonial Transplantation in Agricultural Animals. , 2017, , 343-377.		4
24	Primary cilia on porcine testicular somatic cells and their role in hedgehog signaling and tubular morphogenesis in vitro. Cell and Tissue Research, 2017, 368, 215-223.	2.9	14
25	Exposure to phthalate esters induces an autophagic response in male germ cells. Environmental Epigenetics, 2017, 3, dvx010.	1.8	9
26	Use of Stirred Suspension Bioreactors for Male Germ Cell Enrichment. Methods in Molecular Biology, 2016, 1502, 111-118.	0.9	4
27	Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis. Andrology, 2015, 3, 590-597.	3.5	12
28	Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models. ILAR Journal, 2015, 56, 83-98.	1.8	34
29	Germline modification of domestic animals. Animal Reproduction, 2015, 12, 93-104.	1.0	10
30	Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice. Molecular and Cellular Endocrinology, 2014, 398, 89-100.	3.2	30
31	Xenografting of testicular tissue pieces: 12 years of an in vivo spermatogenesis system. Reproduction, 2014, 148, R71-R84.	2.6	50
32	Primary cilia in the developing pig testis. Cell and Tissue Research, 2014, 358, 597-605.	2.9	15
33	Germ cell survival and differentiation after xenotransplantation of testis tissue from three endangered species: Iberian lynx (Lynx pardinus), Cuvier's gazelle (Gazella cuvieri) and Mohor gazelle (G. dama mhorr). Reproduction, Fertility and Development, 2014, 26, 817.	0.4	19
34	De novo morphogenesis of testis tissue: an improved bioassay to investigate the role of VEGF165 during testis formation. Reproduction, 2014, 148, 109-117.	2.6	24
35	Viral Transduction of Male Germline Stem Cells Results in Transgene Transmission after Germ Cell Transplantation in Pigs1. Biology of Reproduction, 2013, 88, 27.	2.7	60
36	Goat Embryonic Stem-Like Cell Derivation and Characterization. Methods in Molecular Biology, 2013, 1074, 51-67.	0.9	2

#	Article	IF	CITATIONS
37	Testicular Tissue Transplantation for Fertility Preservation. , 2013, , 141-157.		Ο
38	Endocrine modulation of the recipient environment affects development of bovine testis tissue ectopically grafted in mice. Reproduction, 2012, 144, 37-51.	2.6	9
39	From in vitro culture to in vivo models to study testis development and spermatogenesis. Cell and Tissue Research, 2012, 349, 691-702.	2.9	32
40	Suppression of spermatogenesis before grafting increases survival and supports resurgence of spermatogenesis in adult mouse testis. Fertility and Sterility, 2012, 97, 1422-1429.	1.0	7
41	Identification of spermatogonia by labeling for UCHâ€L1 in whole mounted caprine seminiferous tubules. Molecular Reproduction and Development, 2012, 79, 161-161.	2.0	Ο
42	Nonâ€viral transfection of goat germline stem cells by nucleofection results in production of transgenic sperm after germ cell transplantation. Molecular Reproduction and Development, 2012, 79, 255-261.	2.0	25
43	Testicular Tissue Transplantation for Fertility Preservation. , 2012, , 331-343.		2
44	Development of Bovine Fetal Testis Tissue After Ectopic Xenografting in Mice. Journal of Andrology, 2011, 32, 271-281.	2.0	13
45	Establishment of goat embryonic stem cells from in vivo produced blastocystâ€ s tage embryos. Molecular Reproduction and Development, 2011, 78, 202-211.	2.0	37
46	Characterization of the porcine testis-expressed gene 11 (Tex11). Spermatogenesis, 2011, 1, 147-151.	0.8	10
47	Lymphoid-Specific Helicase (HELLS) Is Essential for Meiotic Progression in Mouse Spermatocytes1. Biology of Reproduction, 2011, 84, 1235-1241.	2.7	36
48	Expression pattern of acetylated αâ€ŧubulin in porcine spermatogonia. Molecular Reproduction and Development, 2010, 77, 348-352.	2.0	18
49	Isolation, Characterization, and Culture of Human Spermatogonia1. Biology of Reproduction, 2010, 82, 363-372.	2.7	279
50	Postnatal somatic cell proliferation and seminiferous tubule maturation in pigs: A non-random event. Theriogenology, 2010, 74, 11-23.	2.1	35
51	Recent developments in testis tissue xenografting. Reproduction, 2009, 138, 187-194.	2.6	62
52	Asymmetric Distribution of UCH‣1 in Spermatogonia Is Associated With Maintenance and Differentiation of Spermatogonial Stem Cells. Journal of Cellular Physiology, 2009, 220, 460-468.	4.1	93
53	E-cadherin as a novel surface marker of spermatogonial stem cells. Cell and Tissue Biology, 2009, 3, 103-109.	0.4	18
54	Preservation and transplantation of porcine testis tissue. Reproduction, Fertility and Development, 2009, 21, 489.	0.4	70

#	Article	IF	CITATIONS
55	Male Germ Cell Transplantation. Reproduction in Domestic Animals, 2008, 43, 288-294.	1.4	20
56	Maturation of Testicular Tissue from Infant Monkeys after Xenografting into Mice. Endocrinology, 2008, 149, 5288-5296.	2.8	76
57	Adenoâ€associated virus (AAV)â€mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB Journal, 2008, 22, 374-382.	0.5	74
58	Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates. Reproduction, 2008, 136, 85-93.	2.6	79
59	Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction, 2008, 136, 823-831.	2.6	117
60	Ectopic Grafting of Mammalian Testis Tissue into Mouse Hosts. Methods in Molecular Biology, 2008, 450, 139-148.	0.9	9
61	Building a Testis: Formation of Functional Testis Tissue after Transplantation of Isolated Porcine (Sus) Tj ETQq1	1 0.78431 2.7	4 rgBT /Overld
62	Germ cell transplantation for the propagation of companion animals, non-domestic and endangered species. Reproduction, Fertility and Development, 2007, 19, 732.	0.4	33
63	Comparison of global gene expression between porcine testis tissue xenografts and porcine testis in situ. Molecular Reproduction and Development, 2007, 74, 674-679.	2.0	24
64	TRANSPLANTATION OF GERM CELLS AND TESTIS TISSUE. , 2007, , 235-254.		0
65	Transplantation of germ cells and testis tissue for the study and preservation of fertility. Society of Reproduction and Fertility Supplement, 2007, 65, 447-58.	0.2	0
66	Limited survival of adult human testicular tissue as ectopic xenograft. Human Reproduction, 2006, 21, 384-389.	0.9	148
67	Advances and applications of germ cell transplantation. Human Fertility, 2006, 9, 9-14.	1.7	8
68	Recipient Preparation and Mixed Germ Cell Isolation for Spermatogonial Stem Cell Transplantation in Domestic Cats. Journal of Andrology, 2006, 27, 248-256.	2.0	52
69	The Length of the Spermatogenic Cycle Is Conserved in Porcine and Ovine Testis Xenografts. Journal of Andrology, 2006, 27, 527-533.	2.0	90
70	Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: Application to enrichment and culture of porcine spermatogonia. Molecular Reproduction and Development, 2006, 73, 1531-1540.	2.0	174
71	Germ cell development in equine testis tissue xenografted into mice. Reproduction, 2006, 131, 1091-1098.	2.6	101
72	Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction, 2006, 132, 617-624.	2.6	95

#	Article	IF	CITATIONS
73	Transplantation of Germ Line Stem Cells for the Study and Manipulation of Spermatogenesis. , 2006, , 175-193.		3
74	Germ cell transplantation in pigsadvances and applications. Society of Reproduction and Fertility Supplement, 2006, 62, 331-9.	0.2	4
75	Germ Cell Transplantation. Seminars in Reproductive Medicine, 2005, 23, 257-265.	1.1	21
76	Germ cell fate and seminiferous tubule development in bovine testis xenografts. Reproduction, 2005, 130, 923-929.	2.6	79
77	Germ cell transplantation and testis tissue xenografting in domestic animals. Animal Reproduction Science, 2005, 89, 137-145.	1.5	66
78	Depletion of Endogenous Germ Cells in Male Pigs and Goats in Preparation for Germ Cell Transplantation. Journal of Andrology, 2005, 26, 698-705.	2.0	76
79	Accelerated Maturation of Primate Testis by Xenografting into Mice1. Biology of Reproduction, 2004, 70, 1500-1503.	2.7	215
80	Germ cell transplantation in goats. Molecular Reproduction and Development, 2003, 64, 422-428.	2.0	177
81	Fertility and Cermline Transmission of Donor Haplotype Following Germ Cell Transplantation in Immunocompetent Goats. Biology of Reproduction, 2003, 69, 1260-1264.	2.7	225
82	Progeny from Sperm Obtained after Ectopic Grafting of Neonatal Mouse Testes1. Biology of Reproduction, 2003, 68, 2331-2335.	2.7	237
83	Germ cell transplantation in goats. , 2003, 64, 422.		1
84	Germ Cell Transplantation in Pigs1. Biology of Reproduction, 2002, 66, 21-28.	2.7	250
85	Sperm from neonatal mammalian testes grafted in mice. Nature, 2002, 418, 778-781.	27.8	427
86	Effect of the GnRH-agonist leuprolide on colonization of recipient testes by donor spermatogonial stem cells after transplantation in mice. Tissue and Cell, 2001, 33, 200-207.	2.2	49
87	Transplantation of male germ line stem cells restores fertility in infertile mice. Nature Medicine, 2000, 6, 29-34.	30.7	317
88	Germ cell transplantation from large domestic animals into mouse testes. Molecular Reproduction and Development, 2000, 57, 270-279.	2.0	208
89	Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice. Molecular Reproduction and Development, 1999, 53, 142-148.	2.0	149
90	Transplantation of Germ Cells from Rabbits and Dogs Into Mouse Testes1. Biology of Reproduction, 1999, 61, 1331-1339.	2.7	222

#	Article	IF	CITATIONS
91	Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue and Cell, 1999, 31, 461-472.	2.2	220
92	Generation of an equine oviductal epithelial cell line for the study of sperm-oviduct interactions. Theriogenology, 1999, 52, 875-885.	2.1	14
93	Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice. Molecular Reproduction and Development, 1999, 53, 142-148.	2.0	3
94	Organotypic Rat Testicular Organoids for the Study of Testicular Maturation and Toxicology. Frontiers in Endocrinology, 0, 13, .	3.5	4