
Paula A Da Costa Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2727661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The adult heart requires baseline expression of the transcription factor Hand2 to withstand right ventricular pressure overload. Cardiovascular Research, 2022, 118, 2688-2702.	3.8	3
2	Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Molecular Therapy, 2022, 30, 2257-2273.	8.2	12
3	Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Molecular Therapy - Nucleic Acids, 2022, 28, 307-327.	5.1	7
4	Non-Coding RNAs in the Therapeutic Landscape of Pathological Cardiac Hypertrophy. Cells, 2022, 11, 1805.	4.1	3
5	Stereological estimation of cardiomyocyte number and proliferation. Methods, 2021, 190, 55-62.	3.8	6
6	A circadian clock in the sinus node mediates day-night rhythms in Hcn4 and heart rate. Heart Rhythm, 2021, 18, 801-810.	0.7	46
7	Intrinsic Electrical Remodeling Underlies Atrioventricular Block in Athletes. Circulation Research, 2021, 129, e1-e20.	4.5	23
8	A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nature Communications, 2021, 12, 4808.	12.8	13
9	Non-coding RNAs in endothelial cell signalling and hypoxia during cardiac regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118515.	4.1	11
10	Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Frontiers in Physiology, 2020, 11, 579892.	2.8	27
11	Circulating miR-216a as a biomarker of metabolic alterations and obesity in women. Non-coding RNA Research, 2020, 5, 144-152.	4.6	7
12	MicroRNAs and ventricular remodeling in aortic stenosis. Revista Portuguesa De Cardiologia, 2020, 39, 377-387.	0.5	10
13	Epigenetic Regulation of Pulmonary Arterial Hypertension-Induced Vascular and Right Ventricular Remodeling: New Opportunities?. International Journal of Molecular Sciences, 2020, 21, 8901.	4.1	16
14	Non-coding RNAs in Cardiac Intercellular Communication. Frontiers in Physiology, 2020, 11, 738.	2.8	11
15	Non-Coding RNAs as Blood-Based Biomarkers in Cardiovascular Disease. International Journal of Molecular Sciences, 2020, 21, 9285.	4.1	12
16	Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology, 2020, 17, 685-697.	13.7	228
17	CircRNAs in the heart: bricks in Brunelleschi's Dome. Cardiovascular Research, 2020, 116, 1240-1241.	3.8	0
18	MiR-337-3p Promotes Adipocyte Browning by Inhibiting TWIST1. Cells, 2020, 9, 1056.	4.1	17

PAULA A DA COSTA MARTINS

#	Article	IF	CITATIONS
19	Therapeutic Delivery of miR-148a Suppresses Ventricular Dilation in Heart Failure. Molecular Therapy, 2019, 27, 584-599.	8.2	41
20	Interplay of N acetyl cysteine and melatonin in regulating oxidative stress-induced cardiac hypertrophic factors and microRNAs. Archives of Biochemistry and Biophysics, 2019, 661, 56-65.	3.0	34
21	Comparison of different chemically modified inhibitors of miR-199b in vivo. Biochemical Pharmacology, 2019, 159, 106-115.	4.4	21
22	cROSsing the cardiac MIRe: fibroblast-cardiomyocyte ex(o)press. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1253-H1255.	3.2	1
23	Myocardial cell-to-cell communication via microRNAs. Non-coding RNA Research, 2018, 3, 144-153.	4.6	19
24	miR-199b-5p is a regulator of left ventricular remodeling following myocardial infarction. Non-coding RNA Research, 2017, 2, 18-26.	4.6	24
25	Non oding RNAs in cardiac hypertrophy. Journal of Physiology, 2017, 595, 4037-4050.	2.9	24
26	Regulation of microvascularization in heart failure - an endothelial cell, non-coding RNAs and exosome liaison. Non-coding RNA Research, 2017, 2, 45-55.	4.6	15
27	Mononuclear Diploidy at the Heart of Cardiomyocyte Proliferation. Cell Stem Cell, 2017, 21, 421-422.	11.1	3
28	Targeting microRNAs in heart failure. Trends in Cardiovascular Medicine, 2016, 26, 99-110.	4.9	29
29	Exosomes: scytales in the damaged heart. Annals of Translational Medicine, 2016, 4, 222-222.	1.7	6
30	MicroRNA Expression in Myocardial Tissue and Plasma of Patients with End-Stage Heart Failure during LVAD Support: Comparison of Continuous and Pulsatile Devices. PLoS ONE, 2015, 10, e0136404.	2.5	18
31	Adaptive capacity of the right ventricle: why does it fail?. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H803-H813.	3.2	18
32	Antisense MicroRNA Therapeutics in Cardiovascular Disease: Quo Vadis?. Molecular Therapy, 2015, 23, 1810-1818.	8.2	20
33	miR-21: a star player in cardiac hypertrophy. Cardiovascular Research, 2015, 105, 235-237.	3.8	36
34	Supplementing Exposure to Hypoxia with a Copper Depleted Diet Does Not Exacerbate Right Ventricular Remodeling in Mice. PLoS ONE, 2014, 9, e92983.	2.5	10
35	Circulating miR-29a, Among Other Up-Regulated MicroRNAs, Is the Only Biomarker for Both Hypertrophy and Fibrosis in Patients With Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2014, 63, 920-927.	2.8	270
36	Nuclear Calcium Transients. Circulation, 2014, 130, 221-223.	1.6	1

#	Article	IF	CITATIONS
37	The Hypoxia-Inducible MicroRNA Cluster miR-199aâ^1⁄4214 Targets Myocardial PPARδ and Impairs Mitochondrial Fatty Acid Oxidation. Cell Metabolism, 2013, 18, 341-354.	16.2	193
38	Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nature Cell Biology, 2013, 15, 1282-1293.	10.3	126
39	A Deep Sequencing Approach to Uncover the miRNOME in the Human Heart. PLoS ONE, 2013, 8, e57800.	2.5	88
40	Circulating miRNAs: Reflecting or Affecting Cardiovascular Disease?. Current Hypertension Reports, 2012, 14, 498-509.	3.5	83
41	MicroRNAs in control of cardiac hypertrophy. Cardiovascular Research, 2012, 93, 563-572.	3.8	135
42	MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nature Cell Biology, 2010, 12, 1220-1227.	10.3	289
43	Cooperative Synergy between NFAT and MyoD Regulates Myogenin Expression and Myogenesis. Journal of Biological Chemistry, 2008, 283, 29004-29010.	3.4	72