

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2727643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quasi-continuous synthesis of cobalt single atom catalysts for transfer hydrogenation of quinoline. Chinese Chemical Letters, 2022, 33, 2569-2572.	9.0	10
2	A metal-free hydroxyl functionalized quaternary phosphine type ionic liquid polymer for cycloaddition of CO ₂ and epoxides. Dalton Transactions, 2022, 51, 1303-1307.	3.3	10
3	Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nature Catalysis, 2022, 5, 45-54.	34.4	95
4	Ultrahigh-loading single-site Zn catalyst for efficient and ambient hydrogen generation from silanes. Dalton Transactions, 2022, , .	3.3	1
5	Heterostructured Bi–Cu ₂ S nanocrystals for efficient CO ₂ electroreduction to formate. Nanoscale Horizons, 2022, 7, 508-514.	8.0	16
6	Impact of the Experimental Parameters on Catalytic Activity When Preparing Polymer Protected Bimetallic Nanoparticle Catalysts on Activated Carbon. ACS Catalysis, 2022, 12, 4440-4454.	11.2	6
7	Atomically Precise Single Metal Oxide Cluster Catalyst with Oxygen ontrolled Activity. Advanced Functional Materials, 2022, 32, .	14.9	13
8	Accurate and Robust Calibration of the Uniform Affine Transformation Between Scan-Camera Coordinates for Atom-Resolved In-Focus 4D-STEM Datasets. Microscopy and Microanalysis, 2022, 28, 622-632.	0.4	4
9	Learning motifs and their hierarchies in atomic resolution microscopy. Science Advances, 2022, 8, eabk1005.	10.3	10
10	Crystal facet effects of platinum single-atom catalysts in hydrolytic dehydrogenation of ammonia borane. Journal of Materials Chemistry A, 2022, 10, 10837-10843.	10.3	18
11	Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nature Communications, 2022, 13, 2338.	12.8	119
12	Manipulating the metal-to-insulator transition and magnetic properties in manganite thin films via epitaxial strain. Physical Review B, 2022, 105, .	3.2	2
13	Single Cu atom dispersed on S,N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction. Nano Research, 2022, 15, 5995-6000.	10.4	27
14	Iron single atoms and clusters anchored on natural N-doped nanocarbon with dual reaction sites as superior Fenton-like catalysts. Applied Surface Science, 2022, 597, 153625.	6.1	20
15	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie, 2021, 133, 1232-1239.	2.0	0
16	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie - International Edition, 2021, 60, 1212-1219.	13.8	8
17	Ferroelastic Nanodomain-mediated Mechanical Switching of Ferroelectricity in Thick Epitaxial Films. Nano Letters, 2021, 21, 445-452.	9.1	10
18	N-formylation of amines using phenylsilane and CO2 over ZnO catalyst under mild condition. Catalysis Communications, 2021, 149, 106195.	3.3	12

#	Article	IF	CITATIONS
19	Protein powder derived nitrogen-doped carbon supported atomically dispersed iron sites for selective oxidation of ethylbenzene. Dalton Transactions, 2021, 50, 11711-11715.	3.3	8
20	Controlling the Selectivity of Supported Ru Nanoparticles During Glycerol Hydrogenolysis: Câ^'O <i>vs</i> Câ^'C Cleavage. ChemCatChem, 2021, 13, 1595-1606.	3.7	1
21	Quasiâ€continuous synthesis of iron single atom catalysts via a microcapsule pyrolysis strategy. AICHE Journal, 2021, 67, e17197.	3.6	11
22	Facilitating the Deprotonation of OH to O through Fe ⁴⁺ â€Induced States in Perovskite LaNiO ₃ Enables a Fast Oxygen Evolution Reaction. Small, 2021, 17, e2006930.	10.0	40
23	The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO 2 Catalysts. Angewandte Chemie, 2021, 133, 14541-14549.	2.0	2
24	The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO ₂ Catalysts. Angewandte Chemie - International Edition, 2021, 60, 14420-14428.	13.8	24
25	Selective Functionalization of Hydrocarbons Using a ppm Bioinspired Molecular Tweezer via Proton-Coupled Electron Transfer. ACS Catalysis, 2021, 11, 6810-6815.	11.2	14
26	Frontispiz: The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuOâ€CeO ₂ Catalysts. Angewandte Chemie, 2021, 133, .	2.0	0
27	Ionic Liquid-Stabilized Single-Atom Rh Catalyst Against Leaching. CCS Chemistry, 2021, 3, 1814-1822.	7.8	30
28	Facilitating Ptâ^'WO _{<i>x</i>} Species Interaction for Efficient Glycerol Hydrogenolysis to 1,3â€Propanediol. ChemCatChem, 2021, 13, 3695-3705.	3.7	21
29	Frontispiece: The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuOâ€CeO ₂ Catalysts. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
30	A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis, 2021, 4, 575-585.	34.4	73
31	Identifying key mononuclear Fe species for low-temperature methane oxidation. Chemical Science, 2021, 12, 3152-3160.	7.4	49
32	Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today, 2020, 342, 32-38.	4.4	38
33	Interface Engineered Roomâ€Temperature Ferromagnetic Insulating State in Ultrathin Manganite Films. Advanced Science, 2020, 7, 1901606.	11.2	24
34	Mechanochemical Kilogram-Scale Synthesis of Noble Metal Single-Atom Catalysts. Cell Reports Physical Science, 2020, 1, 100004.	5.6	139
35	Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition. Applied Catalysis B: Environmental, 2020, 264, 118501.	20.2	17
36	Catalytic Production of Alanine from Waste Glycerol. Angewandte Chemie, 2020, 132, 2309-2313.	2.0	18

#	Article	IF	CITATIONS
37	Catalytic Production of Alanine from Waste Glycerol. Angewandte Chemie - International Edition, 2020, 59, 2289-2293.	13.8	84
38	Monodisperse PdSn/SnO _x core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance. Journal of Materials Chemistry A, 2020, 8, 20931-20938.	10.3	33
39	Discovering positively charged Pt for enhanced hydrogenolysis of glycerol to 1,3-propanediol. Green Chemistry, 2020, 22, 8254-8259.	9.0	30
40	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie, 2020, 132, 20358-20366.	2.0	22
41	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 20183-20191.	13.8	175
42	Chemical design and synthesis of superior single-atom electrocatalysts <i>via in situ</i> polymerization. Journal of Materials Chemistry A, 2020, 8, 17683-17690.	10.3	19
43	Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria. Nature Communications, 2020, 11, 4008.	12.8	95
44	Amino-metalloporphyrin polymers derived Fe single atom catalysts for highly efficient oxygen reduction reaction. Science China Chemistry, 2020, 63, 810-817.	8.2	25
45	Glycerol Selective Oxidation to Lactic Acid over AuPt Nanoparticles; Enhancing Reaction Selectivity and Understanding by Support Modification. ChemCatChem, 2020, 12, 3097-3107.	3.7	23
46	Facile Synthesis of Kilogram-Scale Co-Alloyed Pt Single-Atom Catalysts via Ball Milling for Hydrodeoxygenation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2020, 8, 8692-8699.	6.7	89
47	Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A, 2020, 8, 15725-15733.	10.3	4
48	Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chemical Reviews, 2020, 120, 3890-3938.	47.7	275
49	Inhibiting the Dealkylation of Basic Arenes during <i>n</i> -Alkane Direct Aromatization Reactions and Understanding the C ₆ Ring Closure Mechanism. ACS Catalysis, 2020, 10, 8428-8443.	11.2	23
50	Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chemical Engineering Journal, 2020, 389, 124490.	12.7	78
51	Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Atomically Dispersed Ruthenium Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 4333-4337.	3.7	40
52	A facile route to fabricate double atom catalysts with controllable atomic spacing for the r-WGS reaction. Journal of Materials Chemistry A, 2020, 8, 2364-2368.	10.3	37
53	Effect of Elemental Combination on Microstructure and Mechanical Properties of Quaternary Refractory Medium Entropy Alloys. Materials Transactions, 2020, 61, 577-586.	1.2	12
54	Facile synthesis of precious-metal single-site catalysts using organic solvents. Nature Chemistry, 2020, 12, 560-567.	13.6	96

#	Article	IF	CITATIONS
55	Nitrogen and atomic Ni co-doped carbon material for sodium ion storage. Chemical Communications, 2020, 56, 5182-5185.	4.1	20
56	Liquid phase hydrogenation of CO ₂ to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide. New Journal of Chemistry, 2019, 43, 13985-13997.	2.8	18
57	A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nature Communications, 2019, 10, 3663.	12.8	270
58	Selfâ€Assembled Metalloporphyrins–Magnesium Phosphate Hybrid Spheres as Efficient Catalysts for Cycloaddition of Carbon Dioxide. ChemistrySelect, 2019, 4, 8233-8236.	1.5	3
59	Preparation of cytochrome P450 enzyme-cobalt phosphate hybrid nano-flowers for oxidative coupling of benzylamine. Enzyme and Microbial Technology, 2019, 131, 109386.	3.2	15
60	Cage-confinement of gas-phase ferrocene in zeolitic imidazolate frameworks to synthesize high-loading and atomically dispersed Fe–N codoped carbon for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 16508-16515.	10.3	73
61	Facile Synthesis of Metalloporphyrins-Ba2+ Composites as Recyclable and Efficient Catalysts for Olefins Epoxidation Reactions. Chemical Research in Chinese Universities, 2019, 35, 251-255.	2.6	2
62	Synthesis of highly uniform and composition-controlled gold–palladium supported nanoparticles in continuous flow. Nanoscale, 2019, 11, 8247-8259.	5.6	35
63	In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to γ-valerolactone. Journal of Catalysis, 2019, 373, 161-172.	6.2	109
64	The Direct Synthesis of H ₂ O ₂ Using TSâ€1 Supported Catalysts. ChemCatChem, 2019, 11, 1673-1680.	3.7	42
65	The Key Role of Nanocasting in Goldâ€based Fe ₂ O ₃ Nanocasted Catalysts for Oxygen Activation at the Metalâ€support Interface. ChemCatChem, 2019, 11, 1915-1927.	3.7	13
66	Facile synthesis of impurity-free iron single atom catalysts for highly efficient oxygen reduction reaction and active-site identification. Catalysis Science and Technology, 2019, 9, 6556-6560.	4.1	10
67	Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nature Catalysis, 2019, 2, 873-881.	34.4	183
68	The Effects of Dopants on the Cu–ZrO ₂ Catalyzed Hydrogenation of Levulinic Acid. Journal of Physical Chemistry C, 2019, 123, 7879-7888.	3.1	21
69	Nanoporous Carbon: Liquid-Free Synthesis and Geometry-Dependent Catalytic Performance. ACS Nano, 2019, 13, 2463-2472.	14.6	15
70	The Role of Mg(OH) ₂ in the So alled "Baseâ€Free―Oxidation of Glycerol with AuPd Catalysts. Chemistry - A European Journal, 2018, 24, 2396-2402.	3.3	23
71	Selective Hydrogenation of Levulinic Acid Using Ru/C Catalysts Prepared by Sol-Immobilisation. Topics in Catalysis, 2018, 61, 833-843.	2.8	21
72	Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δepitaxial thin films. Applied Physics Letters, 2018, 112, .	3.3	16

#	Article	IF	CITATIONS
73	Correlation between Geometrically Induced Oxygen Octahedral Tilts and Multiferroic Behaviors in BiFeO ₃ Films. Advanced Functional Materials, 2018, 28, 1800839.	14.9	21
74	Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. Catalysis Science and Technology, 2018, 8, 2211-2217.	4.1	42
75	One pot microwave synthesis of highly stable AuPd@Pd supported core–shell nanoparticles. Faraday Discussions, 2018, 208, 409-425.	3.2	13
76	Elucidating the Role of CO ₂ in the Soft Oxidative Dehydrogenation of Propane over Ceria-Based Catalysts. ACS Catalysis, 2018, 8, 3454-3468.	11.2	80
77	A facile route to encapsulate ultrasmall Ni clusters within the pore channels of AlPO-5. Materials Letters, 2018, 210, 211-213.	2.6	3
78	The selective hydrogenation of furfural over supported palladium nanoparticle catalysts prepared by sol-immobilisation: effect of catalyst support and reaction conditions. Catalysis Science and Technology, 2018, 8, 252-267.	4.1	39
79	Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catalysis Science and Technology, 2018, 8, 5848-5857.	4.1	31
80	Piezoelectric modulation of nonlinear optical response in BaTiO3 thin film. Applied Physics Letters, 2018, 113, 132902.	3.3	13
81	Hydrogen production from formic acid decomposition in the liquid phase using Pd nanoparticles supported on CNFs with different surface properties. Sustainable Energy and Fuels, 2018, 2, 2705-2716.	4.9	37
82	Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece. Solid Earth, 2018, 9, 573-598.	2.8	18
83	Supported Bimetallic AuPd Nanoparticles as a Catalyst for the Selective Hydrogenation of Nitroarenes. Nanomaterials, 2018, 8, 690.	4.1	14
84	Quantum Confinement in Oxide Heterostructures: Room-Temperature Intersubband Absorption in SrTiO ₃ /LaAlO ₃ Multiple Quantum Wells. ACS Nano, 2018, 12, 7682-7689.	14.6	15
85	One-pot synthesis of self-supported hierarchical urchin-like Ni ₃ S ₂ with ultrahigh areal pseudocapacitance. Journal of Materials Chemistry A, 2018, 6, 22115-22122.	10.3	44
86	Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide. Chemistry - A European Journal, 2017, 23, 11834-11842.	3.3	36
87	<i>In Situ</i> Observation of Oxygen Vacancy Dynamics and Ordering in the Epitaxial LaCoO ₃ System. ACS Nano, 2017, 11, 6942-6949.	14.6	89
88	Highly Active Gold and Gold–Palladium Catalysts Prepared by Colloidal Methods in the Absence of Polymer Stabilizers. ChemCatChem, 2017, 9, 2914-2918.	3.7	17
89	Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science and Technology, 2017, 7, 1928-1936.	4.1	9
90	Cytochrome <scp>P450</scp> Enzymeâ€Copper Phosphate Hybrid Nanoâ€Flowers with Superior Catalytic Performances for Selective Oxidation of Sulfides. Chinese Journal of Chemistry, 2017, 35, 693-698.	4.9	21

#	Article	IF	CITATIONS
91	Selfâ€assembled metalloporphyrins–inorganic hybrid flowers and their application to efficient epoxidation of olefins. Journal of Chemical Technology and Biotechnology, 2017, 92, 2594-2605.	3.2	12
92	Interface Engineering of Domain Structures in BiFeO ₃ Thin Films. Nano Letters, 2017, 17, 486-493.	9.1	69
93	Metallosalenâ€Based Ionic Porous Polymers as Bifunctional Catalysts for the Conversion of CO ₂ into Valuable Chemicals. ChemSusChem, 2017, 10, 1526-1533.	6.8	77
94	Activation and Deactivation of Gold/Ceria–Zirconia in the Lowâ€Temperature Water–Gas Shift Reaction. Angewandte Chemie - International Edition, 2017, 56, 16037-16041. Maninulating multiple order parameters via oxygen vacancies: The case of complements	13.8	49
95	xmlns:mml= [%] http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi mathvariant="normal">E < /mml:mi> < mml:msub> < mml:mi mathvariant="normal">u < /mml:mi> < mml:mrow> < mml:mn> 0.5 < /mml:mn> < /mml:mrow> < /mml:msub> < mml:mi mathvariant="normal">B < /mml:mi> < mml:msub> < mml:mi	3.2	15
96	mathvariant="normal">a <mmlimrow><mmlimr>0.5</mmlimr></mmlimrow> <mmlimi> Aqueous Au-Pd colloids catalyze selective CH ₄ oxidation to CH ₃ OH with O ₂ under mild conditions. Science, 2017, 358, 223-227.</mmlimi>	Ti12.6	i> <mml:msu 478</mml:msu
97	Deactivation studies of bimetallic AuPd nanoparticles supported on MgO during selective aerobic oxidation of alcohols. Applied Catalysis A: General, 2017, 546, 58-66.	4.3	25
98	Polar phase transitions in heteroepitaxial stabilized La _{0.5} Y _{0.5} AlO ₃ thin films. Journal of Physics Condensed Matter, 2017, 29, 405401.	1.8	0
99	Cation–Eutectic Transition <i>via</i> Sublattice Melting in CuInP ₂ S ₆ /In _{4/3} P ₂ S ₆ van der Waals Layered Crystals. ACS Nano, 2017, 11, 7060-7073.	14.6	54
100	The Lowâ€Temperature Oxidation of Propane by using H ₂ O ₂ and Fe/ZSMâ€5 Catalysts: Insights into the Active Site and Enhancement of Catalytic Turnover Frequencies. ChemCatChem, 2017, 9, 642-650.	3.7	16
101	A Sacrificial Coating Strategy Toward Enhancement of Metal–Support Interaction for Ultrastable Au Nanocatalysts. Journal of the American Chemical Society, 2016, 138, 16130-16139.	13.7	217
102	Towards spin-polarized two-dimensional electron gas at a surface of an antiferromagnetic insulating oxide. Physical Review B, 2016, 94, .	3.2	6
103	Identifying local structural states in atomic imaging by computer vision. Advanced Structural and Chemical Imaging, 2016, 2, 14.	4.0	14
104	Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications, 2016, 7, 12905.	12.8	62
105	Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte. Small, 2016, 12, 3535-3542.	10.0	62
106	Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols. Catalysis Science and Technology, 2016, 6, 5473-5482.	4.1	39
107	Palladium-tin catalysts for the direct synthesis of H ₂ O ₂ with high selectivity. Science, 2016, 351, 965-968.	12.6	465
108	Atomicâ€Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision. Small, 2015, 11, 5895-5900.	10.0	73

#	Article	IF	CITATIONS
109	Quantum confinement in transition metal oxide quantum wells. Applied Physics Letters, 2015, 106, .	3.3	17
110	High- <i>T</i> _c Layered Ferrielectric Crystals by Coherent Spinodal Decomposition. ACS Nano, 2015, 9, 12365-12373.	14.6	67
111	Methyl Formate Formation from Methanol Oxidation Using Supported Gold–Palladium Nanoparticles. ACS Catalysis, 2015, 5, 637-644.	11.2	78
112	Identification of phases, symmetries and defects through local crystallography. Nature Communications, 2015, 6, 7801.	12.8	63
113	Towards 3D Mapping of BO ₆ Octahedron Rotations at Perovskite Heterointerfaces, Unit Cell by Unit Cell. ACS Nano, 2015, 9, 8412-8419.	14.6	78
114	Biomanufacturing of CdS quantum dots. Green Chemistry, 2015, 17, 3775-3782.	9.0	74
115	Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts. Applied Catalysis A: General, 2015, 504, 373-380.	4.3	45
116	High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to 1 ³ -valerolactone. Nature Communications, 2015, 6, 6540.	12.8	275
117	Better Catalysts through Microscopy: Mesoscale M1/M2 Intergrowth in Molybdenum–Vanadium Based Complex Oxide Catalysts for Propane Ammoxidation. ACS Nano, 2015, 9, 3470-3478.	14.6	47
118	Impact of symmetry on the ferroelectric properties of CaTiO3 thin films. Applied Physics Letters, 2015, 106, .	3.3	42
119	Antisite defects in layered multiferroic CuCr _{0.9} In _{0.1} P ₂ S ₆ . Nanoscale, 2015, 7, 18579-18583.	5.6	8
120	Gold Catalysis: A Reflection on Where We are Now. Catalysis Letters, 2015, 145, 71-79.	2.6	56
121	Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. Catalysis Science and Technology, 2015, 5, 217-227.	4.1	18
122	Assessing and Controlling the Size, Morphology and Composition of Supported Bimetallic Catalyst Nanoparticles. Microscopy and Microanalysis, 2014, 20, 74-75.	0.4	1
123	Designer Titania-Supported Au–Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production. ACS Nano, 2014, 8, 3490-3497.	14.6	279
124	Oxidation of Benzyl Alcohol and Carbon Monoxide Using Gold Nanoparticles Supported on MnO ₂ Nanowire Microspheres. Chemistry - A European Journal, 2014, 20, 1701-1710.	3.3	40
125	High Activity Redox Catalysts Synthesized by Chemical Vapor Impregnation. ACS Nano, 2014, 8, 957-969.	14.6	25
126	Enhanced Auï£;Pd Activity in the Direct Synthesis of Hydrogen Peroxide using Nanostructured Titanate Nanotube Supports. ChemCatChem, 2014, 6, 2531-2534.	3.7	33

#	Article	IF	CITATIONS
127	Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification. Dalton Transactions, 2014, 43, 14976-14982.	3.3	9
128	Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. Chemical Science, 2014, 5, 3603-3616.	7.4	45
129	The direct synthesis of hydrogen peroxide using platinum promoted gold–palladium catalysts. Catalysis Science and Technology, 2014, 4, 3244-3250.	4.1	23
130	New hypothesis testing-based rapid change detection for power grid system monitoring. International Journal of Parallel, Emergent and Distributed Systems, 2014, 29, 239-263.	1.0	3
131	Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au–Pd alloy nanoparticles supported on titanium dioxide. Chemical Communications, 2014, 50, 12612-12614.	4.1	42
132	Uncovering Structure-Properties Relations in Fuel Cells and Catalysts with Quantitative Aberration-Corrected STEM and EELS. Microscopy and Microanalysis, 2014, 20, 484-485.	0.4	13
133	Toward 3D Mapping of Octahedral Rotations at Perovskite Thin Film Heterointerfaces Unit Cell by Unit Cell. Microscopy and Microanalysis, 2014, 20, 1038-1039.	0.4	0
134	Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM-5. Journal of the American Chemical Society, 2013, 135, 11087-11099.	13.7	83
135	Selective catalytic oxidation using supported gold–platinum and palladium–platinum nanoalloys prepared by sol-immobilisation. Physical Chemistry Chemical Physics, 2013, 15, 10636.	2.8	37
136	Oxidation of Methane to Methanol with Hydrogen Peroxide Using Supported Gold–Palladium Alloy Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 1280-1284.	13.8	239
137	The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today, 2013, 203, 139-145.	4.4	58
138	Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au $\hat{a} \in$ "Pd nanoparticles. Catalysis Today, 2013, 203, 146-152.	4.4	57
139	Effect of acid pre-treatment on AuPd/SiO ₂ catalysts for the direct synthesis of hydrogen peroxide. Catalysis Science and Technology, 2013, 3, 812-818.	4.1	45
140	Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au–Pd–Pt nanoparticles. Faraday Discussions, 2013, 162, 365.	3.2	65
141	Goldâ€Nanoparticleâ€Based Catalysts for the Oxidative Esterification of 1,4â€Butanediol into Dimethyl Succinate. ChemSusChem, 2013, 6, 1952-1958.	6.8	5
142	Redispersion of Gold Supported on Oxides. ACS Catalysis, 2012, 2, 552-560.	11.2	73
143	Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science, 2012, 3, 2965.	7.4	38
144	Gold, palladium and gold–palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science and Technology, 2012, 2, 1914.	4.1	52

#	Article	IF	CITATIONS
145	The effect of heat treatment on the performance and structure of carbon-supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis, 2012, 292, 227-238.	6.2	94
146	Promotion of Phenol Photodecomposition over TiO ₂ Using Au, Pd, and Au–Pd Nanoparticles. ACS Nano, 2012, 6, 6284-6292.	14.6	252
147	Synthesis of Stable Ligand-free Gold–Palladium Nanoparticles Using a Simple Excess Anion Method. ACS Nano, 2012, 6, 6600-6613.	14.6	128
148	Mercaptocarborane-Capped Gold Nanoparticles: Electron Pools and Ion Traps with Switchable Hydrophilicity. Journal of the American Chemical Society, 2012, 134, 212-221.	13.7	135
149	Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science and Technology, 2012, 2, 105-112.	4.1	174
150	Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copperâ€Promoted Feâ€ZSMâ€5. Angewandte Chemie - International Edition, 2012, 51, 5129-5133.	13.8	492
151	Preparation of ultra low loaded Au catalysts for oxidation reactions. Faraday Discussions, 2011, 152, 381.	3.2	9
152	Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts. Faraday Discussions, 2011, 152, 367.	3.2	20
153	Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold–copper nanoparticles. Green Chemistry, 2011, 13, 2091.	9.0	242
154	Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Transactions, 2011, 40, 3927.	3.3	125
155	Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catalysis Science and Technology, 2011, 1, 747.	4.1	28
156	Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis, 2011, 283, 161-167.	6.2	21
157	Selective Oxidation of Glycerol by Highly Active Bimetallic Catalysts at Ambient Temperature under Baseâ€Free Conditions. Angewandte Chemie - International Edition, 2011, 50, 10136-10139.	13.8	212
158	Controlling the Duality of the Mechanism in Liquidâ€Phase Oxidation of Benzyl Alcohol Catalysed by Supported Au–Pd Nanoparticles. Chemistry - A European Journal, 2011, 17, 6524-6532.	3.3	100
159	Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 2011, 163, 47-54.	4.4	73
160	Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Auâ^'Pd Catalysts Prepared by Sol Immobilization. Langmuir, 2010, 26, 16568-16577.	3.5	201
161	The effect of catalyst preparation method on the performance of supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry, 2010, 12, 915.	9.0	63
162	The Effect of Bromide Pretreatment on the Performance of Supported Au–Pd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem, 2009, 1, 479-484.	3.7	34

#	Article	IF	CITATIONS
163	Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry, 2009, 11, 1037.	9.0	61