Xiaohai Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2727306/publications.pdf Version: 2024-02-01

Χιλομλι Υλης

#	Article	IF	CITATIONS
1	Catalytic Conversion of 5â€Hydroxymethylfurfural to Highâ€Value Derivatives by Selective Activation of Câ^'O, C=O, and C=C Bonds. ChemSusChem, 2022, 15, .	6.8	16
2	Regulation of BrÃ,nsted acid sites to enhance the decarburization of hexoses to furfural. Catalysis Science and Technology, 2022, 12, 3506-3515.	4.1	6
3	Continuous production of 1,4-pentanediol from ethyl levulinate and industrialized furfuryl alcohol over Cu-based catalysts. Sustainable Energy and Fuels, 2022, 6, 2449-2461.	4.9	6
4	Conversion of furfuryl alcohol to 1,5-pentanediol over CuCoAl nanocatalyst: The synergetic catalysis between Cu, CoOx and the basicity of metal oxides. Molecular Catalysis, 2022, 526, 112391.	2.0	4
5	Conversion of glucose to levulinic acid and upgradation to γ-valerolactone on Ru/TiO ₂ catalysts. New Journal of Chemistry, 2021, 45, 14406-14413.	2.8	5
6	Sustainable production of γ-valerolactone and Î′-valerolactone through the coupling of hydrogenation and dehydrogenation. Sustainable Energy and Fuels, 2021, 5, 930-934.	4.9	13
7	Highly selective glucose isomerization by HY zeolite in gamma-butyrolactone/H2O system over fixed bed reactor. Catalysis Communications, 2021, 156, 106324.	3.3	8
8	Highly effective production of levulinic acid and Î ³ -valerolactone through self-circulation of solvent in a continuous process. Reaction Chemistry and Engineering, 2021, 6, 1811-1818.	3.7	4
9	Efficient Cu catalyst for 5-hydroxymethylfurfural hydrogenolysis by forming Cu–O–Si bonds. Catalysis Science and Technology, 2020, 10, 7323-7330.	4.1	14
10	Synergistic effect between copper and different metal oxides in the selective hydrogenolysis of glucose. New Journal of Chemistry, 2019, 43, 3733-3742.	2.8	15
11	Complete Aqueous Hydrogenation of 5-Hydroxymethylfurfural at Room Temperature over Bimetallic RuPd/Graphene Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 10670-10678.	6.7	57
12	Aqueous Hydrogenation of Levulinic Acid to 1,4â€Pentanediol over Moâ€Modified Ru/Activated Carbon Catalyst. ChemSusChem, 2018, 11, 1316-1320.	6.8	73
13	Construction of novel Cu/ZnO-Al2O3 composites for furfural hydrogenation: The role of Al components. Applied Catalysis A: General, 2018, 561, 78-86.	4.3	43
14	The role of water on the selective decarbonylation of 5-hydroxymethylfurfural over Pd/Al 2 O 3 catalyst: Experimental and DFT studies. Applied Catalysis B: Environmental, 2017, 212, 15-22.	20.2	29
15	Efficient Synthesis of Furfuryl Alcohol and 2â€Methylfuran from Furfural over Mineralâ€Derived Cu/ZnO Catalysts. ChemCatChem, 2017, 9, 3023-3030.	3.7	64
16	Inclusion of Zn into Metallic Ni Enables Selective and Effective Synthesis of 2,5-Dimethylfuran from Bioderived 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2017, 5, 11280-11289.	6.7	73
17	Insights into influence of nanoparticle size and metal–support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation. Catalysis Science and Technology, 2017, 7, 5625-5634.	4.1	57
18	One-Step Continuous Conversion of Fructose to 2,5-Dihydroxymethylfuran and 2,5-Dimethylfuran. ACS Sustainable Chemistry and Engineering, 2016, 4, 4506-4510.	6.7	52

XIAOHAI YANG

#	Article	IF	CITATIONS
19	Efficient aqueous hydrogenation of levulinic acid to Î ³ -valerolactone over a highly active and stable ruthenium catalyst. Catalysis Science and Technology, 2016, 6, 1469-1475.	4.1	66
20	Conversion of carbohydrates to furfural via selective cleavage of the carbon–carbon bond: the cooperative effects of zeolite and solvent. Green Chemistry, 2016, 18, 1619-1624.	9.0	88
21	WO modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol. Catalysis Today, 2016, 261, 116-127.	4.4	54
22	Effect of WO _{<i>x</i>} on Bifunctional Pd–WO _{<i>x</i>} /Al ₂ O ₃ Catalysts for the Selective Hydrogenolysis of Glucose to 1,2-Propanediol. ACS Catalysis, 2015, 5, 4612-4623.	11.2	82
23	Efficient synthesis of 2,5-dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts. Catalysis Science and Technology, 2015, 5, 4208-4217.	4.1	132
24	Oneâ€step Conversion of Furfural into 2â€Methyltetrahydrofuran under Mild Conditions. ChemSusChem, 2015, 8, 1534-1537.	6.8	87
25	Direct conversion of carbohydrates to Î ³ -valerolactone facilitated by a solvent effect. Green Chemistry, 2015, 17, 3084-3089.	9.0	49
26	Graphene-Modified Ru Nanocatalyst for Low-Temperature Hydrogenation of Carbonyl Groups. ACS Catalysis, 2015, 5, 7379-7384.	11.2	113
27	Ni Nanoparticles Inlaid Nickel Phyllosilicate as a Metal–Acid Bifunctional Catalyst for Low-Temperature Hydrogenolysis Reactions. ACS Catalysis, 2015, 5, 5914-5920.	11.2	157
28	Aqueous-phase hydrogenolysis of glucose toÂvalue-added chemicals and biofuels: A comparative study of active metals. Biomass and Bioenergy, 2015, 72, 189-199.	5.7	39
29	Waterâ€Promoted Hydrogenation of Levulinic Acid to γâ€Valerolactone on Supported Ruthenium Catalyst. ChemCatChem, 2015, 7, 508-512.	3.7	117
30	Cu Nanoparticles Inlaid Mesoporous Al ₂ O ₃ As a High-Performance Bifunctional Catalyst for Ethanol Synthesis via Dimethyl Oxalate Hydrogenation. ACS Catalysis, 2014, 4, 3612-3620.	11.2	151
31	The Rise of Calcination Temperature Enhances the Performance of Cu Catalysts: Contributions of Support. ACS Catalysis, 2014, 4, 3675-3681.	11.2	79
32	Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of Catalysis, 2013, 303, 70-79.	6.2	215
33	Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to γ-butyrolactone. Applied Catalysis A: General, 2012, 443-444, 191-201.	4.3	66
34	One-step hydrogenolysis of glycerol to biopropanols over Pt–H4SiW12O40/ZrO2 catalysts. Green Chemistry, 2012, 14, 2607.	9.0	106