
Nishat Passricha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2726899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Marker-Free Rice (Oryza sativa L. cv. IR 64) Overexpressing PDH45 Gene Confers Salinity Tolerance by Maintaining Photosynthesis and Antioxidant Machinery. Antioxidants, 2022, 11, 770.	5.1	3
2	Azotobacter vinelandii helps to combat chromium stress in rice by maintaining antioxidant machinery. 3 Biotech, 2021, 11, 275.	2.2	8
3	Proteomics for Brassinosteroid signalling: Understanding Brassinosteroids mediated stress responses through advanced proteomics. Plant Gene, 2021, 26, 100282.	2.3	2
4	Salicylic acid modulates ACS, NHX1, sos1 and HKT1;2 expression to regulate ethylene overproduction and Na ⁺ ions toxicity that leads to improved physiological status and enhanced salinity stress tolerance in tomato plants cv. Pusa Ruby. Plant Signaling and Behavior, 2021, 16, 1950888.	2.4	12
5	Acclimation potential of Noni (<i>Morinda citrifolia</i> L.) plant to temperature stress is mediated through photosynthetic electron transport rate. Plant Signaling and Behavior, 2021, 16, 1865687.	2.4	15
6	Rice lectin receptorâ€like kinase provides salinity tolerance by ion homeostasis. Biotechnology and Bioengineering, 2020, 117, 498-510.	3.3	23
7	Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 2020, 324, 198-210.	3.8	57
8	Ethylene mediated physiological response for in vitro development of salinity tolerant tomato. Journal of Plant Interactions, 2020, 15, 406-416.	2.1	5
9	Pea GÎ ² subunit of G proteins has a role in nitric oxide-induced stomatal closure in response to heat and drought stress. Protoplasma, 2020, 257, 1639-1654.	2.1	10
10	Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth. Symbiosis, 2020, 81, 139-148.	2.3	13
11	Transgenic approach in crop improvement. , 2020, , 329-350.		0
12	The scope of transformation and genome editing for quantitative trait improvements in rice. , 2020, , 23-43.		1
13	<i>OsRuvB</i> transgene induces salt tolerance in pigeon pea. Journal of Plant Interactions, 2020, 15, 17-26.	2.1	10
14	Concurrent overexpression of rice G-protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice. Planta, 2019, 250, 1505-1520.	3.2	15
15	Silencing of tomato CTR1 provides enhanced tolerance against Tomato leaf curl virus infection. Plant Signaling and Behavior, 2019, 14, e1565595.	2.4	15
16	Field performance of bacterial inoculants to alleviate water stress effects in wheat (Triticum) Tj ETQq0 0 0 rgB	T /Ovgrlock	10 Jf 50 142

17	Cyanide produced with ethylene by ACS and its incomplete detoxification by Î ² -CAS in mango inflorescence leads to malformation. Scientific Reports, 2019, 9, 18361.	3.3	6
18	Marker-free transgenic rice plant overexpressing pea LecRLK imparts salinity tolerance by inhibiting sodium accumulation. Plant Molecular Biology, 2019, 99, 265-281.	3.9	18

#	Article	IF	CITATIONS
19	Cloning, Sequencing and In Silico Analysis of phbC Gene from Pseudomonas spp Indian Journal of Microbiology, 2019, 59, 58-63.	2.7	2
20	Genome-wide analysis and transcriptional expression pattern-assessment of superoxide dismutase (SOD) in rice and Arabidopsis under abiotic stresses. Plant Gene, 2019, 17, 100165.	2.3	34
21	Salt stress triggers augmented levels of Na+, Ca2+ and ROS and alter stress-responsive gene expression in roots of CBL9 and CIPK23 knockout mutants of Arabidopsis thaliana. Environmental and Experimental Botany, 2019, 161, 265-276.	4.2	30
22	Receptor-Like Kinases Control the Development, Stress Response, and Senescence in Plants. , 2019, , 199-210.		8
23	Role of Plant Helicases in Imparting Salinity Stress Tolerance to Plants. , 2019, , 39-52.		4
24	An Overview of AAA+ Superfamily Proteins Associated Helicases. , 2019, , 247-264.		2
25	Introgression, Generational Expression and Salinity Tolerance Conferred by the Pea DNA HelicaseÂ45 Transgene into Two Commercial Rice Genotypes, BR28 and BR47. Molecular Biotechnology, 2018, 60, 111-123.	2.4	2
26	Stress-induced Oryza sativa RuvBL1a is DNA-independent ATPase and unwinds DNA duplex in 3′ to 5′ direction. Protoplasma, 2018, 255, 669-684.	2.1	12
27	Helicases and Their Importance in Abiotic Stresses. , 2018, , 119-141.		1
28	Prediction and validation of cis-regulatory elements in 5′ upstream regulatory regions of lectin receptor-like kinase gene family in rice. Protoplasma, 2017, 254, 669-684.	2.1	19
29	Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Scientific Reports, 2017, 7, 2760.	3.3	77
30	Heterologous expression of PDH47 confers drought tolerance in indica rice. Plant Cell, Tissue and Organ Culture, 2017, 130, 577-589.	2.3	14
31	Function of heterotrimeric G-protein Î ³ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta, 2017, 245, 367-383.	3.2	51
32	Overexpression of PDH45 or SUV3 helicases in rice leads to delayed leaf senescence-associated events. Protoplasma, 2017, 254, 1103-1113.	2.1	8
33	Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants. Frontiers in Plant Science, 2017, 8, 364.	3.6	10
34	Prediction of cis-regulatory elements for a detailed insight of RuvB family genes from Oryza sativa. Oryza, 2017, 54, 135.	0.4	8
35	The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops. Frontiers in Plant Science, 2016, 7, 506.	3.6	196
36	Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition. Frontiers in Plant Science, 2016, 7, 1574.	3.6	133

#	Article	IF	CITATIONS
37	Simultaneous expression of regulatory genes associated with specific droughtâ€adaptive traits improves drought adaptation in peanut. Plant Biotechnology Journal, 2016, 14, 1008-1020.	8.3	42
38	PDH45 transgenic rice maintain cell viability through lower accumulation of Na+, ROS and calcium homeostasis in roots under salinity stress. Journal of Plant Physiology, 2016, 191, 1-11.	3.5	46
39	Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta, 2016, 243, 1251-1264.	3.2	146
40	Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco. Plant Cell Reports, 2016, 35, 1021-1041.	5.6	13
41	NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. Protoplasma, 2016, 253, 767-786.	2.1	59
42	Arabidopsis thaliana MCM3 single subunit of MCM2–7 complex functions as 3′ to 5′ DNA helicase. Protoplasma, 2016, 253, 467-475.	2.1	13
43	Assessing zygosity in progeny of transgenic plants: current methods and perspectives. Journal of Biological Methods, 2016, 3, e46.	0.6	32
44	Differential and temperature dependent regulation of ADP-glucose pyrophosphorylase by specific chromosome in wheat grains. Cereal Research Communications, 2015, 43, 591-603.	1.6	7
45	Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Frontiers in Microbiology, 2015, 6, 984.	3.5	96
46	ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Frontiers in Plant Science, 2015, 6, 210.	3.6	145
47	Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses. Frontiers in Plant Science, 2015, 6, 1094.	3.6	22
48	Isolation of genes conferring salt tolerance from Piriformospora indica by random overexpression in Escherichia coli. World Journal of Microbiology and Biotechnology, 2015, 31, 1195-1209.	3.6	14
49	Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability and Upregulation of Stress-Responsive Genes Leads to Abiotic Stress Tolerance. Molecular Biotechnology, 2015, 57, 475-488.	2.4	45
50	Mango (Mangifera indica L.) malformation: a malady of stress ethylene origin. Physiology and Molecular Biology of Plants, 2015, 21, 1-8.	3.1	14
51	A new insight into root responses to external cues: Paradigm shift in nutrient sensing. Plant Signaling and Behavior, 2015, 10, e1049791.	2.4	7
52	<i>PDH45</i> overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation. Plant Signaling and Behavior, 2015, 10, e992289.	2.4	17
53	Heterologous expression and biochemical characterization of a highly active and stable chloroplastic CuZn-superoxide dismutase from Pisum sativum. BMC Biotechnology, 2015, 15, 3.	3.3	14
54	Stress-induced Oryza sativa BAT1 dual helicase exhibits unique bipolar translocation. Protoplasma, 2015, 252, 1563-1574.	2.1	13

#	Article	IF	CITATIONS
55	Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 2015, 22, 10375-10394.	5.3	247
56	Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Molecular Biology, 2015, 88, 193-206.	3.9	58
57	Calcium-energized motor protein forisome controls damage in phloem: potential applications as biomimetic "smart―material. Critical Reviews in Biotechnology, 2015, 35, 173-183.	9.0	6
58	Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere. Chemosphere, 2015, 119, 1040-1047.	8.2	15
59	Insights into the functional characteristics of geminivirus rolling-circle replication initiator protein and its interaction with host factors affecting viral DNA replication. Archives of Virology, 2015, 160, 375-387.	2.1	42
60	OsBAT1 Augments Salinity Stress Tolerance by Enhancing Detoxification of ROS and Expression of Stress-Responsive Genes in Transgenic Rice. Plant Molecular Biology Reporter, 2015, 33, 1192-1209.	1.8	12
61	Pea p68 Imparts Salinity Stress Tolerance in Rice by Scavenging of ROS-Mediated H2O2 and Interacts with Argonaute. Plant Molecular Biology Reporter, 2015, 33, 221-238.	1.8	21
62	OsSUV3 functions in cadmium and zinc stress tolerance in rice (Oryza sativaL. cv IR64). Plant Signaling and Behavior, 2014, 9, e27389.	2.4	8
63	Isolation and functional characterization of the promoter of a DEAD-box helicase <i>Psp68</i> using <i>Agrobacterium-</i> mediated transient assay. Plant Signaling and Behavior, 2014, 9, e28992.	2.4	16
64	Genetic engineering of crops: a ray of hope for enhanced food security. Plant Signaling and Behavior, 2014, 9, e28545.	2.4	19
65	Cloning and functional characterization of the promoter of <i>PsSEOF1</i> gene from <i>Pisum sativum</i> under different stress conditions using <i>Agrobacterium</i> -mediated transient assay. Plant Signaling and Behavior, 2014, 9, e29626.	2.4	20
66	A novel <i>Azotobacter vinellandii</i> (SRI <i>Az</i> 3) functions in salinity stress tolerance in rice. Plant Signaling and Behavior, 2014, 9, e29377.	2.4	41
67	lsolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1). Plant Signaling and Behavior, 2014, 9, e28890.	2.4	15
68	Response of <i>PiCypA</i> tobacco T2 transgenic matured plant to potential tolerance to salinity stress. Plant Signaling and Behavior, 2014, 9, e27538.	2.4	6
69	Overexpression of a Pea DNA Helicase (PDH45) in Peanut (Arachis hypogaea L.) Confers Improvement of Cellular Level Tolerance and Productivity Under Drought Stress. Molecular Biotechnology, 2014, 56, 111-125.	2.4	41
70	Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma, 2014, 251, 943-953.	2.1	66
71	In-silico analysis and expression profiling implicate diverse role of EPSPS family genes in regulating developmental and metabolic processes. BMC Research Notes, 2014, 7, 58.	1.4	17
72	Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma, 2014, 251, 1265-1283.	2.1	121

#	Article	IF	CITATIONS
73	Calcium powered phloem protein ofSEOgene family "Forisome―functions in wound sealing and act as biomimetic smart materials. Plant Signaling and Behavior, 2014, 9, e29438.	2.4	3
74	OsACA6, a P-type 2B Ca2+ ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. Planta, 2014, 240, 809-824.	3.2	33
75	Salinity and drought tolerant OsACA6 enhances cold tolerance in transgenic tobacco by interacting with stress-inducible proteins. Plant Physiology and Biochemistry, 2014, 82, 229-238.	5.8	16
76	OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice, 2014, 7, 17.	4.0	35
77	Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase. Plant Molecular Biology, 2014, 85, 639-651.	3.9	23
78	Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 2014, 13, 66.	4.0	747
79	First evidence of putrescine involvement in mitigating the floral malformation in mangoes: A scanning electron microscope study. Protoplasma, 2014, 251, 1255-1261.	2.1	10
80	Pea p68, a DEAD-Box Helicase, Provides Salinity Stress Tolerance in Transgenic Tobacco by Reducing Oxidative Stress and Improving Photosynthesis Machinery. PLoS ONE, 2014, 9, e98287.	2.5	65
81	<scp>O</scp> s <scp>SUV</scp> 3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (<i><scp>O</scp>ryza sativa</i> ÂL. cv.) Tj ETQq1 1 0.78431	4 rg ₿. 万/Ove	erlo ck 110 Tf 5(
82	Sequence-specific 1H, 13C and 15N NMR assignments of Cyclophilin A like protein from Piriformospora indica involved in salt stress tolerance. Biomolecular NMR Assignments, 2013, 7, 175-178.	0.8	14
83	<i>>Os<scp>ACA</scp>6</i> , a Pâ€type <scp>IIB</scp> Ca ²⁺ <scp>ATP</scp> ase promotes salinity and drought stress tolerance in tobacco by <scp>ROS</scp> scavenging and enhancing the expression of stressâ€tesponsive genes. Plant Journal, 2013, 76, 997-1015.	5.7	97
84	Knights in Action: Lectin Receptor-Like Kinases in Plant Development and Stress Responses. Molecular Plant, 2013, 6, 1405-1418.	8.3	132
85	Molecular characterization of cyclophilin A-like protein from Piriformospora indica for its potential role to abiotic stress tolerance in E. coli. BMC Research Notes, 2013, 6, 555.	1.4	13
86	Analysis of DNA repair helicase UvrD from Arabidopsis thaliana andÂOryza sativa. Plant Physiology and Biochemistry, 2013, 71, 254-260.	5.8	5
87	A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Molecular Biology, 2013, 82, 1-22.	3.9	79
88	Rice heterotrimeric G-protein alpha subunit (RGA1): In silico analysis of the gene and promoter and its upregulation under abiotic stress. Plant Physiology and Biochemistry, 2013, 63, 262-271.	5.8	31
89	Genome-wide analysis of plant-type II Ca2+ATPases gene family from rice andÂArabidopsis: Potential role in abiotic stresses. Plant Physiology and Biochemistry, 2013, 65, 32-47.	5.8	49
90	Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiology and Biochemistry, 2013, 63, 254-261.	5.8	228

#	Article	IF	CITATIONS
91	Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis. Plant Signaling and Behavior, 2013, 8, e23021.	2.4	54
92	First evidence of ethylene production byFusarium mangiferaeassociated with mango malformation. Plant Signaling and Behavior, 2013, 8, e22673.	2.4	15
93	High frequency regeneration via direct somatic embryogenesis and efficient <i>Agrobacterium</i> - mediated genetic transformation of tobacco. Plant Signaling and Behavior, 2013, 8, e24354.	2.4	54
94	An efficient and rapid regeneration via multiple shoot induction from mature seed derived embryogenic and organogenic callus of Indian maize (<i>Zea mays</i> L.). Plant Signaling and Behavior, 2013, 8, e25891.	2.4	18
95	High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (<i>Cossypium hirsutum</i> L. cv Narashima) by using embryo apex. Plant Signaling and Behavior, 2013, 8, e22763.	2.4	18
96	Different expression of miRNAs targeting helicases in rice in response to low and high dose rate Î ³ -ray treatments. Plant Signaling and Behavior, 2013, 8, e25128.	2.4	30
97	In vitro: Response of plant growth regulators and antimalformins on conidia germination of <i><i>Fusarium mangiferae</i></i> and incidence of mango malformation. Communicative and Integrative Biology, 2013, 6, e25659.	1.4	4
98	Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils. Plant Signaling and Behavior, 2013, 8, e24950.	2.4	15
99	Multiple abiotic stress responsive rice cyclophilin: (OsCYP-25) mediates a wide range of cellular responses. Communicative and Integrative Biology, 2013, 6, e25260.	1.4	38
100	Reproductive Organ and Vascular Specific Promoter of the Rice Plasma Membrane Ca2+ATPase Mediates Environmental Stress Responses in Plants. PLoS ONE, 2013, 8, e57803.	2.5	18
101	Pea DNA helicase 45 promotes salinity stress tolerance in IR64 rice with improved yield. Plant Signaling and Behavior, 2012, 7, 1042-1046.	2.4	40
102	microRNAs as promising tools for improving stress tolerance in rice. Plant Signaling and Behavior, 2012, 7, 1296-1301.	2.4	36
103	Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. Plant Signaling and Behavior, 2012, 7, 733-740.	2.4	57
104	A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress. Plant Signaling and Behavior, 2012, 7, 1138-1143.	2.4	95
105	Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. GM Crops and Food, 2012, 3, 123-128.	3.8	49
106	Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Molecular Biology, 2012, 80, 365-388.	3.9	129
107	Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Science, 2012, 182, 112-120.	3.6	293
108	Genome wide analysis of <i>Cyclophilin</i> gene family from rice and Arabidopsis and its comparison with yeast. Plant Signaling and Behavior, 2012, 7, 1653-1666.	2.4	48

#	Article	IF	CITATIONS
109	Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Molecular Breeding, 2012, 30, 345-354.	2.1	61
110	Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern. Journal of Biosciences, 2012, 37, 167-197.	1.1	128
111	Wide range of interacting partners of pea GÎ ² subunit of G-proteins suggests its multiple functions in cell signalling. Plant Physiology and Biochemistry, 2012, 58, 1-5.	5.8	14
112	Cadmium stress tolerance in crop plants. Plant Signaling and Behavior, 2011, 6, 215-222.	2.4	311
113	Rice G-protein coupled receptor (GPCR). Plant Signaling and Behavior, 2011, 6, 1079-1086.	2.4	18
114	A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Molecular Biology, 2011, 76, 19-34.	3.9	75
115	Plant MCM proteins: role in DNA replication and beyond. Plant Molecular Biology, 2011, 77, 537-545.	3.9	73
116	Chaperones and foldases in endoplasmic reticulum stress signaling in plants. Plant Signaling and Behavior, 2011, 6, 232-236.	2.4	73
117	Differential cadmium stress tolerance in five Indian mustard (<i>Brassica juncea</i> L.) cultivars. Plant Signaling and Behavior, 2011, 6, 293-300.	2.4	124
118	Overexpression of a pea DNA helicase 45 in bacteria confers salinity stress tolerance. Plant Signaling and Behavior, 2011, 6, 1271-1275.	2.4	13
119	Inhibition of unwinding and ATPase activities of pea MCM6 DNA helicase by actinomycin and nogalamycin. Plant Signaling and Behavior, 2011, 6, 327-329.	2.4	3
120	Stress induced beta subunit of heterotrimeric G-proteins from <i>Pisum sativum</i> interacts with mitogen activated protein kinase. Plant Signaling and Behavior, 2011, 6, 287-292.	2.4	22
121	Introduction to PSB Special Issue. Plant Signaling and Behavior, 2011, 6, 173-174.	2.4	5
122	Promoter of a salinity and cold stress-induced MCM6 DNA helicase from pea. Plant Signaling and Behavior, 2011, 6, 1006-1008.	2.4	16
123	Isolation and in silico analysis of promoter of a high salinity stress-regulated pea DNA helicase 45. Plant Signaling and Behavior, 2011, 6, 1447-1450.	2.4	9
124	Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Molecular Biology, 2010, 73, 449-465.	3.9	86
125	A single subunit MCM6 from pea forms homohexamer and functions as DNA helicase. Plant Molecular Biology, 2010, 74, 327-336.	3.9	23
126	Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconjugate Journal, 2010, 27, 133-150.	2.7	51

#	Article	IF	CITATIONS
127	Forisomes: calcium-powered protein complexes with potential as â€~smart' biomaterials. Trends in Biotechnology, 2010, 28, 102-110.	9.3	27
128	Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48, 909-930.	5.8	8,238
129	Conserved thioredoxin fold is present in Pisum sativum L. sieve element occlusion-1 protein. Plant Signaling and Behavior, 2010, 5, 623-628.	2.4	3
130	Forisomes as calcium-energized protein complex: A historical perspective. Plant Signaling and Behavior, 2010, 5, 497-500.	2.4	4
131	Polyamines and abiotic stress tolerance in plants. Plant Signaling and Behavior, 2010, 5, 26-33.	2.4	606
132	Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in <i>Escherichia coli</i> and their functional validation. Plant Signaling and Behavior, 2009, 4, 400-412.	2.4	16
133	Signaling through G protein coupled receptors. Plant Signaling and Behavior, 2009, 4, 942-947.	2.4	165
134	Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases. Mutation Research - Reviews in Mutation Research, 2009, 681, 134-149.	5.5	183
135	Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology (United Kingdom), 2009, 155, 780-790.	1.8	214
136	A Method to Confer Salinity Stress Tolerance to Plants by Helicase Overexpression. Methods in Molecular Biology, 2009, 587, 377-387.	0.9	7
137	Translation initiation factor 4A: a prototype member of dead-box protein family. Physiology and Molecular Biology of Plants, 2008, 14, 101-107.	3.1	17
138	Plant signaling in stress. Plant Signaling and Behavior, 2008, 3, 79-86.	2.4	86
139	Further Characterization of Calcineurin B-Like Protein and Its Interacting Partner CBL-Interacting Protein Kinase from <i>Pisum sativum</i> . Plant Signaling and Behavior, 2007, 2, 358-361.	2.4	31
140	Calcium Signaling Network in Plants. Plant Signaling and Behavior, 2007, 2, 79-85.	2.4	310
141	Mechanisms of High Salinity Tolerance in Plants. Methods in Enzymology, 2007, 428, 419-438.	1.0	585
142	Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant Journal, 2007, 51, 656-669.	5.7	122
143	Signaling through MAP kinase networks in plants. Archives of Biochemistry and Biophysics, 2006, 452, 55-68.	3.0	331
144	Helicases as molecular motors: An insight. Physica A: Statistical Mechanics and Its Applications, 2006, 372, 70-83.	2.6	24

#	Article	IF	CITATIONS
145	Stress responsive DEAD-box helicases: A new pathway to engineer plant stress tolerance. Journal of Photochemistry and Photobiology B: Biology, 2006, 84, 150-160.	3.8	126
146	Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant Journal, 2005, 44, 76-87.	5.7	107
147	Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 509-514.	7.1	216
148	The Gly-Arg-rich C-terminal domain of pea nucleolin is a DNA helicase that catalytically translocates in the 5′- to 3′-direction. Archives of Biochemistry and Biophysics, 2005, 434, 306-315.	3.0	14
149	Cold stress-induced pea DNA helicase 47 is homologous to eIF4A and inhibited by DNA-interacting ligands. Archives of Biochemistry and Biophysics, 2005, 440, 79-90.	3.0	16
150	Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 2005, 444, 139-158.	3.0	2,295
151	Prokaryotic and eukaryotic DNA helicases. FEBS Journal, 2004, 271, 1835-1848.	0.2	139
152	Unraveling DNA helicases. Motif, structure, mechanism and function. FEBS Journal, 2004, 271, 1849-1863.	0.2	172
153	Plant DNA helicases: the long unwinding road. Journal of Experimental Botany, 2003, 54, 2201-2214.	4.8	49
154	Pea DNA Topoisomerase I Is Phosphorylated and Stimulated by Casein Kinase 2 and Protein Kinase C. Plant Physiology, 2003, 132, 2108-2115.	4.8	19
155	Potent inhibition of DNA unwinding and ATPase activities of pea DNA helicase 45 by DNA-binding agents. Biochemical and Biophysical Research Communications, 2002, 294, 334-339.	2.1	15
156	Molecular Mechanisms of DNA Damage and Repair: Progress in Plants. Critical Reviews in Biochemistry and Molecular Biology, 2001, 36, 337-397.	5.2	238
157	Unraveling DNA Repair in Human: Molecular Mechanisms and Consequences of Repair Defect. Critical Reviews in Biochemistry and Molecular Biology, 2001, 36, 261-290.	5.2	60
158	A pea homologue of human DNA helicase I is localized within the dense fibrillar component of the nucleolus and stimulated by phosphorylation with CK2 and cdc2 protein kinases. Plant Journal, 2001, 25, 9-17.	5.7	7
159	A pea homologue of human DNA helicase I is localized within the dense fibrillar component of the nucleolus and stimulated by phosphorylation with CK2 and cdc2 protein kinases. Plant Journal, 2001, 25, 9-17.	5.7	36
160	A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. Plant Journal, 2000, 24, 219-229.	5.7	82
161	Ku Autoantigen: A Multifunctional DNA-Binding Protein. Critical Reviews in Biochemistry and Molecular Biology, 2000, 35, 1-33.	5.2	164
162	Plant Cell and Viral Helicases: Essential Enzymes for Nucleic Acid Transactions. Critical Reviews in Plant Sciences, 2000, 19, 449-478.	5.7	12

#	Article	IF	CITATIONS
163	Plant Cell and Viral Helicases: Essential Enzymes for Nucleic Acid Transactions. Critical Reviews in Plant Sciences, 2000, 19, 449-478.	5.7	10
164	Nucleolin: A Multifunctional Major Nucleolar Phosphoprotein. Critical Reviews in Biochemistry and Molecular Biology, 1998, 33, 407-436.	5.2	166
165	Cloning and characterisation of a gene encoding an antiviral protein from Clerodendrum aculeatum L. Plant Molecular Biology, 1997, 33, 745-751.	3.9	31
166	Unraveling DNA helicases from plant cells. , 1997, 33, 947-952.		20
167	Purification and Characterization of a DNA Helicase from Pea Chloroplast that Translocates in the 3'-to-5' Direction. FEBS Journal, 1996, 238, 54-63.	0.2	41
168	Human DNA helicase V, a novel DNA unwinding enzyme from HeLa cells. Nucleic Acids Research, 1993, 21, 2323-2329.	14.5	39