
Guangyu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2726671/publications.pdf Version: 2024-02-01

CHANCYLLL

#	Article	lF	CITATIONS
1	Bioaccumulation, metabolism and endocrine-reproductive effects of metolachlor and its S-enantiomer in adult zebrafish (Danio rerio). Science of the Total Environment, 2022, 802, 149826.	8.0	21
2	The presence of polystyrene nanoplastics enhances the MCLR uptake in zebrafish leading to the exacerbation of oxidative liver damage. Science of the Total Environment, 2022, 818, 151749.	8.0	11
3	The joint effect of parental exposure to microcystin-LR and polystyrene nanoplastics on the growth of zebrafish offspring. Journal of Hazardous Materials, 2021, 410, 124677.	12.4	42
4	Molecular mechanism of reproductive toxicity induced by beta-cypermethrin in zebrafish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 239, 108894.	2.6	19
5	Mechanisms of parental co-exposure to polystyrene nanoplastics and microcystin-LR aggravated hatching inhibition of zebrafish offspring. Science of the Total Environment, 2021, 774, 145766.	8.0	25
6	Paternal exposure to microcystin-LR triggers developmental neurotoxicity in zebrafish offspring via an epigenetic mechanism involving MAPK pathway. Science of the Total Environment, 2021, 792, 148437.	8.0	11
7	Microcystin-LR exposure decreased the fetal weight of mice by disturbance of placental development and ROS-mediated endoplasmic reticulum stress in the placenta. Environmental Pollution, 2020, 256, 113362.	7.5	26
8	Co-exposure with titanium dioxide nanoparticles exacerbates MCLR-induced brain injury in zebrafish. Science of the Total Environment, 2019, 693, 133540.	8.0	29
9	Microcystin-LR exposure induced nephrotoxicity by triggering apoptosis in female zebrafish. Chemosphere, 2019, 214, 598-605.	8.2	43
10	Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. Environmental Pollution, 2018, 235, 974-982.	7.5	46
11	Adverse reproductive performance in zebrafish with increased bioconcentration of microcystin-LR in the presence of titanium dioxide nanoparticles. Environmental Science: Nano, 2018, 5, 1208-1217.	4.3	23
12	Parental transfer of titanium dioxide nanoparticle aggravated MCLR-induced developmental toxicity in zebrafish offspring. Environmental Science: Nano, 2018, 5, 2952-2965.	4.3	11
13	Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. Environmental Pollution, 2018, 241, 1018-1026.	7.5	40
14	Prolonged exposure to low-dose microcystin induces nonalcoholic steatohepatitis in mice: a systems toxicology study. Archives of Toxicology, 2017, 91, 465-480.	4.2	71
15	Microcystin-LR induces changes in the GABA neurotransmitter system of zebrafish. Aquatic Toxicology, 2017, 188, 170-176.	4.0	39
16	Parental transfer of microcystin-LR induced transgenerational effects of developmental neurotoxicity in zebrafish offspring. Environmental Pollution, 2017, 231, 471-478.	7.5	61
17	Establishment of a three-step method to evaluate effects of chemicals on development of zebrafish embryo/larvae. Chemosphere, 2017, 186, 209-217.	8.2	2
18	Parental exposure to microcystin-LR induced thyroid endocrine disruption in zebrafish offspring, a transgenerational toxicity. Environmental Pollution, 2017, 230, 981-988.	7.5	65

Guangyu Li

#	Article	IF	CITATIONS
19	Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo. Environmental Pollution, 2016, 213, 793-800.	7.5	93
20	Reproduction impairment and endocrine disruption in female zebrafish after long-term exposure to MC-LR: A life cycle assessment. Environmental Pollution, 2016, 208, 477-485.	7.5	62
21	Life-cycle exposure to microcystin-LR interferes with the reproductive endocrine system of male zebrafish. Aquatic Toxicology, 2016, 175, 205-212.	4.0	43
22	Microcystin-RR exposure results in growth impairment by disrupting thyroid endocrine in zebrafish larvae. Aquatic Toxicology, 2015, 164, 16-22.	4.0	37
23	A proteomic analysis of prenatal transfer of microcystin-LR induced neurotoxicity in rat offspring. Journal of Proteomics, 2015, 114, 197-213.	2.4	42
24	The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos. Aquatic Toxicology, 2014, 149, 25-32.	4.0	98
25	Transcriptional responses of mu-, pi- and omega-class glutathione S-transferase genes in the hepatopancreas of Cipangopaludina cahayensis exposed to microcystin-LR. Science Bulletin, 2014, 59, 3153-3161.	1.7	3
26	A Proteomic Analysis of MCLR-induced Neurotoxicity: Implications for Alzheimer's Disease. Toxicological Sciences, 2012, 127, 485-495.	3.1	86
27	Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos. Aquatic Toxicology, 2012, 118-119, 108-115.	4.0	20
28	Identification of cda gene in bighead carp and its expression in response to microcystin-LR. Ecotoxicology and Environmental Safety, 2012, 79, 206-213.	6.0	2
29	Identification and expression profile of Id1 in bighead carp in response to microcystin-LR. Environmental Toxicology and Pharmacology, 2012, 34, 324-333.	4.0	7
30	The proteomic study on cellular responses of the testes of zebrafish (<i>Danio rerio</i>) exposed to microcystinâ€RR. Proteomics, 2012, 12, 300-312.	2.2	38
31	Waterborne exposure to microcystin-LR alters thyroid hormone levels and gene transcription in the hypothalamic–pituitary–thyroid axis in zebrafish larvae. Chemosphere, 2012, 87, 1301-1307.	8.2	81
32	Protein expression profiling in the zebrafish (<i>Danio rerio</i>) embryos exposed to the microcystin‣R. Proteomics, 2011, 11, 2003-2018.	2.2	71
33	Acute effects of microcystins on the transcription of 14 glutathione <i>S</i> â€ŧransferase isoforms in Wistar rat. Environmental Toxicology, 2011, 26, 187-194.	4.0	9
34	Quantitative profiling of mRNA expression of glutathione <i>S</i> â€ŧransferase superfamily genes in various tissues of bighead carp (<i>Aristichthys nobilis</i>). Journal of Biochemical and Molecular Toxicology, 2010, 24, 250-259.	3.0	14
35	The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat. Toxicology, 2009, 257, 86-94.	4.2	70
36	Microcystin-induced variations in transcription of GSTs in an omnivorous freshwater fish, goldfish. Aquatic Toxicology, 2008, 88, 75-80.	4.0	69