Genevieve Almouzni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/272657/publications.pdf

Version: 2024-02-01

195 papers 21,023 citations

74 h-index 138 g-index

210 all docs

210 docs citations

times ranked

210

18664 citing authors

#	Article	IF	CITATIONS
1	Transcription-coupled H3.3 recycling: A link with chromatin states. Seminars in Cell and Developmental Biology, 2023, 135, 13-23.	2.3	6
2	H3–H4 histone chaperones and cancer. Current Opinion in Genetics and Development, 2022, 73, 101900.	1.5	17
3	HIRA-dependent boundaries between H3 variants shape early replication in mammals. Molecular Cell, 2022, 82, 1909-1923.e5.	4.5	12
4	HIRA Supports Hepatitis B Virus Minichromosome Establishment and Transcriptional Activity in Infected Hepatocytes. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 527-551.	2.3	7
5	CENP-A Regulation and Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	9
6	CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas. Nature Communications, 2022, 13, .	5 . 8	11
7	CENP-A overexpression promotes distinct fates in human cells, depending on p53 status. Communications Biology, 2021, 4, 417.	2.0	23
8	PBRM1 Deficiency Confers Synthetic Lethality to DNA Repair Inhibitors in Cancer. Cancer Research, 2021, 81, 2888-2902.	0.4	66
9	Epigenomics in the single cell era, an important read out for genome function and cell identity. Epigenomics, 2021, 13, 981-984.	1.0	3
10	CENP-A Subnuclear Localization Pattern as Marker Predicting Curability by Chemoradiation Therapy for Locally Advanced Head and Neck Cancer Patients. Cancers, 2021, 13, 3928.	1.7	10
11	The Histone H3 Family and Its Deposition Pathways. Advances in Experimental Medicine and Biology, 2021, 1283, 17-42.	0.8	26
12	Combining epigenetic drugs with other therapies for solid tumours — past lessons and future promise. Nature Reviews Clinical Oncology, 2020, 17, 91-107.	12.5	283
13	Regulation of ALT-associated homology-directed repair by polyADP-ribosylation. Nature Structural and Molecular Biology, 2020, 27, 1152-1164.	3.6	27
14	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	13.7	108
15	Two HIRA-dependent pathways mediate H3.3 de novo deposition and recycling during transcription. Nature Structural and Molecular Biology, 2020, 27, 1057-1068.	3.6	48
16	Dynamics of Asymmetric and Symmetric Divisions of Muscle Stem Cells InÂVivo and on Artificial Niches. Cell Reports, 2020, 30, 3195-3206.e7.	2.9	42
17	Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway. Nature Communications, 2020, 11, 1256.	5 . 8	38
18	JMJD1B, a novel player in histone H3 and H4 processing to ensure genome stability. Epigenetics and Chromatin, 2020, 13, 6.	1.8	10

#	Article	IF	Citations
19	Abstract 1058: Targeting chromatin remodeling-associated genetic vulnerabilities in cancer: PBRM1 defects are synthetic lethal with PARP and ATR inhibitors. , 2020, , .		2
20	Vision 2030 for the optimal approach to cancer research and care in Europe: A mission or a network of networks?. Tumori, 2019, 105, 265-270.	0.6	0
21	Dynamic Histone H3 Incorporation Fuels Metastatic Progression. Trends in Molecular Medicine, 2019, 25, 933-935.	3.5	2
22	Centromere Dysfunction Compromises Mitotic Spindle Pole Integrity. Current Biology, 2019, 29, 3072-3080.e5.	1.8	23
23	Design on a Rational Basis of High-Affinity Peptides Inhibiting the Histone Chaperone ASF1. Cell Chemical Biology, 2019, 26, 1573-1585.e10.	2.5	11
24	The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain <i>Cd4</i> silencing in cytotoxic T cells. Genes and Development, 2019, 33, 669-683.	2.7	27
25	Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. Journal of Cell Biology, 2019, 218, 39-54.	2.3	69
26	Metabolic Deregulations Affecting Chromatin Architecture: One-Carbon Metabolism and Krebs Cycle Impact Histone Methylation. RNA Technologies, 2019, , 573-606.	0.2	1
27	The epigenetic control of stemness in CD8 ⁺ T cell fate commitment. Science, 2018, 359, 177-186.	6.0	184
28	Genome-wide Control of Heterochromatin Replication by the Telomere Capping Protein TRF2. Molecular Cell, 2018, 70, 449-461.e5.	4.5	52
29	Chromatin Dynamics in Cancer: Epigenetic Parameters and Cellular Fate—Histone Variants and Their Chaperones: New Targets?., 2018,, 372-372.		0
30	Tetratricopeptide repeat domain 7A is a nuclear factor that modulates transcription and chromatin structure. Cell Discovery, 2018, 4, 61.	3.1	10
31	Challenges and guidelines toward 4D nucleome data and model standards. Nature Genetics, 2018, 50, 1352-1358.	9.4	47
32	Chromatin plasticity: A versatile landscape that underlies cell fate and identity. Science, 2018, 361, 1332-1336.	6.0	152
33	POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication. Molecular Cell, 2018, 72, 112-126.e5.	4.5	87
34	KAP1 facilitates reinstatement of heterochromatin after DNA replication. Nucleic Acids Research, 2018, 46, 8788-8802.	6.5	32
35	Imaging Newly Synthesized and Old Histone Variant Dynamics Dependent on Chaperones Using the SNAP-Tag System. Methods in Molecular Biology, 2018, 1832, 207-221.	0.4	6
36	High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nature Communications, 2018, 9, 3181.	5.8	74

#	Article	IF	Citations
37	Functional activity of the H3.3 histone chaperone complex HIRA requires trimerization of the HIRA subunit. Nature Communications, 2018, 9, 3103.	5.8	41
38	Chromatin dynamics during the cell cycle at centromeres. Nature Reviews Genetics, 2017, 18, 192-208.	7.7	85
39	Essential role for centromeric factors following p53 loss and oncogenic transformation. Genes and Development, 2017, 31, 463-480.	2.7	54
40	PP32 and SET/TAF- $\hat{\Pi}^2$ proteins regulate the acetylation of newly synthesized histone H4. Nucleic Acids Research, 2017, 45, 11700-11710.	6.5	21
41	Shaping Chromatin in the Nucleus: The Bricks and the Architects. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 1-14.	2.0	19
42	Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1. ELife, 2017, 6, .	2.8	47
43	Suv39h1 links the SUMO pathway to constitutive heterochromatin. Molecular and Cellular Oncology, 2016, 3, e1225546.	0.3	4
44	The SENP7 SUMO-Protease Presents a Module of Two HP1 Interaction Motifs that Locks HP1 Protein at Pericentric Heterochromatin. Cell Reports, 2016, 14, 2502.	2.9	0
45	Maintenance of Epigenetic Information. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019372.	2.3	129
46	Functional Characterization of Histone Chaperones Using SNAP-Tag-Based Imaging to Assess De Novo Histone Deposition. Methods in Enzymology, 2016, 573, 97-117.	0.4	9
47	Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage. Molecular Cell, 2016, 64, 65-78.	4.5	54
48	The methyltransferase Suv39h1 links the SUMO pathway to HP1 \hat{l}_{\pm} marking at pericentric heterochromatin. Nature Communications, 2016, 7, 12224.	5.8	27
49	The Epigenome and Cancer Stem Cell Fate: Connected by a Linker Histone Variant. Cell Stem Cell, 2016, 19, 567-568.	5.2	2
50	Chromatin Regulators as a Guide for Cancer Treatment Choice. Molecular Cancer Therapeutics, 2016, 15, 1768-1777.	1.9	18
51	The CENP-T/-W complex is a binding partner of the histone chaperone FACT. Genes and Development, 2016, 30, 1313-1326.	2.7	45
52	Developmental Roles of Histone H3 Variants and Their Chaperones. , 2016, , 385-419.		1
53	Abstract LB-129: Epigenetic regulators to predict docetaxel sensitivity; a guide for treatment choice. , $2016,$		0
54	The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015, 528, 218-224.	13.7	244

#	Article	IF	CITATIONS
55	HJURP Involvement in De Novo CenH3CENP-A and CENP-C Recruitment. Cell Reports, 2015, 11, 22-32.	2.9	80
56	The SENP7 SUMO-Protease Presents a Module of Two HP1 Interaction Motifs that Locks HP1 Protein at Pericentric Heterochromatin. Cell Reports, 2015, 10, 771-782.	2.9	40
57	Roadmap for regulation. Nature, 2015, 518, 314-316.	13.7	190
58	MCM2 binding to histones H3–H4 and ASF1 supports a tetramer-to-dimer model for histone inheritance at the replication fork. Nature Structural and Molecular Biology, 2015, 22, 587-589.	3.6	39
59	Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Research, 2015, 43, 1905-1917.	6.5	108
60	Methylation of histone H3 lysine 9 occurs during translation. Nucleic Acids Research, 2015, 43, 9097-9106.	6.5	52
61	Chromatin dynamics after DNA damage: The legacy of the access–repair–restore model. DNA Repair, 2015, 36, 114-121.	1.3	109
62	The histone chaperone HJURP is a new independent prognostic marker for luminal A breast carcinoma. Molecular Oncology, 2015, 9, 657-674.	2.1	74
63	Abstract LB-155: Epigenetic profiling of chemotherapy sensitivity. , 2015, , .		0
64	Establishment of a replication fork barrier following induction of DNA binding in mammalian cells. Cell Cycle, 2014, 13, 1607-1616.	1.3	36
65	Assembly of telomeric chromatin to create ALTernative endings. Trends in Cell Biology, 2014, 24, 675-685.	3.6	54
66	How to restore chromatin structure and function in response to ⟨scp⟩DNA⟨/scp⟩ damage – let the chaperones play. FEBS Journal, 2014, 281, 2315-2323.	2.2	9
67	The survival gene MED4 explains low penetrance retinoblastoma in patients with large RB1 deletion. Human Molecular Genetics, 2014, 23, 5243-5250.	1.4	31
68	A network of players in H3 histone variant deposition and maintenance at centromeres. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 241-250.	0.9	46
69	Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nature Structural and Molecular Biology, 2014, 21, 167-174.	3.6	207
70	Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annual Review of Cell and Developmental Biology, 2014, 30, 615-646.	4.0	107
71	Phosphorylation and DNA Binding of HJURP Determine Its Centromeric Recruitment and Function in CenH3CENP-A Loading. Cell Reports, 2014, 8, 190-203.	2.9	70
72	Relationship between genome and epigenome - challenges and requirements for future research. BMC Genomics, 2014, 15, 487.	1.2	24

#	Article	IF	CITATIONS
73	Histone lysine methylation and chromatin replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1433-1439.	0.9	74
74	Mislocalization of the Centromeric Histone Variant CenH3/CENP-A in Human Cells Depends on the Chaperone DAXX. Molecular Cell, 2014, 53, 631-644.	4.5	214
75	Pericentric heterochromatin state during the cell cycle controls the histone variant composition of centromeres. Journal of Cell Science, 2014, 127, 3347-59.	1.2	44
76	Histone Chaperones: Assisting Histone Traffic and Nucleosome Dynamics. Annual Review of Biochemistry, 2014, 83, 487-517.	5.0	258
77	Crystal structure and stable property of the cancer-associated heterotypic nucleosome containing CENP-A and H3.3. Scientific Reports, 2014, 4, 7115.	1.6	64
78	Histone modifications and a choice of variant: a language that helps the genome express itself. F1000prime Reports, 2014, 6, 76.	5.9	42
79	Chromatin assembly from nucleosome to heterochromatin: the issue of DNA damage. Epigenetics and Chromatin, 2013, 6, .	1.8	0
80	Developmental roles of histone H3 variants and their chaperones. Trends in Genetics, 2013, 29, 630-640.	2.9	104
81	Placing the HIRA Histone Chaperone Complex in the Chromatin Landscape. Cell Reports, 2013, 3, 1012-1019.	2.9	116
82	Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell, 2013, 155, 963.	13.5	3
83	Genome architecture and expression. Current Opinion in Genetics and Development, 2013, 23, 79-80.	1.5	1
84	Subfunctionalization via Adaptive Evolution Influenced by Genomic Context: The Case of Histone Chaperones ASF1a and ASF1b. Molecular Biology and Evolution, 2013, 30, 1853-1866.	3.5	60
85	Chromatin and DNA Replication. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010207-a010207.	2.3	162
86	Heterochromatin Reorganization during Early Mouse Development Requires a Single-Stranded Noncoding Transcript. Cell Reports, 2013, 4, 1156-1167.	2.9	86
87	Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell, 2013, 155, 94-106.	13.5	243
88	Differential contribution of HP1 proteins to DNA end resection and homology-directed repair. Cell Cycle, 2013, 12, 422-429.	1.3	49
89	Nucleosome Dynamics as Modular Systems that Integrate DNA Damage and Repair. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012658-a012658.	2.3	46
90	Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply. EMBO Journal, 2012, 31, 3229-3229.	3.5	27

#	Article	IF	CITATIONS
91	Prime, Repair, Restore: The Active Role of Chromatin in the DNA Damage Response. Molecular Cell, 2012, 46, 722-734.	4.5	292
92	A Developmental Requirement for HIRA-Dependent H3.3 Deposition Revealed at Gastrulation in Xenopus. Cell Reports, 2012, 1, 730-740.	2.9	86
93	HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenetics and Chromatin, 2012, 5, 17.	1.8	93
94	A unified phylogeny-based nomenclature for histone variants. Epigenetics and Chromatin, 2012, 5, 7.	1.8	265
95	The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin. Nature Structural and Molecular Biology, 2012, 19, 458-460.	3.6	63
96	Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO Journal, 2012, 31, 3678-3690.	3.5	221
97	Characterization of chromatin domains by 3D fluorescence microscopy: An automated methodology for quantitative analysis and nuclei screening. BioEssays, 2012, 34, 509-517.	1.2	9
98	Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply. EMBO Journal, 2012, 31, 2013-2023.	3.5	66
99	Interplay between mismatch repair and chromatin assembly. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1895-1900.	3.3	68
100	An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature, 2012, 487, 249-253.	13.7	199
101	How to duplicate a DNA package. Nature, 2012, 483, 412-413.	13.7	2
102	Heterochromatin maintenance and establishment: Lessons from the mouse pericentromere. Nucleus, 2011, 2, 332-338.	0.6	81
103	A Specific Function for the Histone Chaperone NASP to Fine-Tune a Reservoir of Soluble H3-H4 in the Histone Supply Chain. Molecular Cell, 2011, 44, 918-927.	4.5	137
104	Dynamics of Histone H3 Deposition InÂVivo Reveal a Nucleosome Gap-Filling Mechanism for H3.3 to Maintain Chromatin Integrity. Molecular Cell, 2011, 44, 928-941.	4.5	329
105	SUMOylation promotes de novo targeting of HP1 \hat{I} ± to pericentric heterochromatin. Nature Genetics, 2011, 43, 220-227.	9.4	191
106	Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO Journal, 2011, 30, 480-493.	3.5	137
107	Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends in Genetics, 2011, 27, 177-185.	2.9	114
108	Cell cycle dynamics of histone variants at the centromere, a model for chromosomal landmarks. Current Opinion in Cell Biology, 2011, 23, 266-276.	2.6	33

#	Article	IF	CITATIONS
109	H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G $<$ sub $>$ 1 $<$ /sub $>$ phase. Nucleus, 2011, 2, 146-157.	0.6	204
110	The double face of the histone variant H3.3. Cell Research, 2011, 21, 421-434.	5.7	324
111	Xenopus HJURP and condensin II are required for CENP-A assembly. Journal of Cell Biology, 2011, 192, 899-899.	2.3	31
112	Sequential Establishment of Marks on Soluble Histones H3 and H4. Journal of Biological Chemistry, 2011, 286, 17714-17721.	1.6	100
113	<i>Xenopus</i> HJURP and condensin II are required for CENP-A assembly. Journal of Cell Biology, 2011, 192, 569-582.	2.3	98
114	HP1 \hat{l}_{\pm} recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. Journal of Cell Biology, 2011, 193, 81-95.	2.3	173
115	$HP1\hat{l}\pm$ recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. Journal of Experimental Medicine, 2011, 208, i9-i9.	4.2	O
116	Clinical significance and prognostic value of chromatin assembly factor†overexpression in human solid tumours. Histopathology, 2010, 57, 716-724.	1.6	45
117	Mixing or Not Mixing. Science, 2010, 328, 56-57.	6.0	12
118	Nucleosome dynamics and histone variants. Essays in Biochemistry, 2010, 48, 75-87.	2.1	33
119	Replication Stress Interferes with Histone Recycling and Predeposition Marking of New Histones. Molecular Cell, 2010, 37, 736-743.	4.5	242
120	A Strand-Specific Burst in Transcription of Pericentric Satellites Is Required for Chromocenter Formation and Early Mouse Development. Developmental Cell, 2010, 19, 625-638.	3.1	273
121	Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends in Cell Biology, 2009, 19, 29-41.	3.6	135
122	Heterochromatin protein $1\hat{l}\pm$: a hallmark of cell proliferation relevant to clinical oncology. EMBO Molecular Medicine, 2009, 1, 178-191.	3.3	65
123	CAF-1 is required for efficient replication of euchromatic DNA in Drosophila larval endocycling cells. Chromosoma, 2009, 118, 235-248.	1.0	31
124	A histone code for the DNA damage response in mammalian cells?. EMBO Journal, 2009, 28, 1828-1830.	3.5	26
125	The HP1α–CAF1–SetDB1â€containing complex provides H3K9me1 for Suv39â€mediated K9me3 in pericentr heterochromatin. EMBO Reports, 2009, 10, 769-775.	ric 2.0	201
126	Epigenetic inheritance during the cell cycle. Nature Reviews Molecular Cell Biology, 2009, 10, 192-206.	16.1	707

#	Article	IF	Citations
127	Tumor aromatase expression as a prognostic factor for local control in young breast cancer patients after breast-conserving treatment. Breast Cancer Research, 2009, 11, R54.	2.2	13
128	Replication of Chromatin., 2009,, 297-315.		0
129	Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature, 2008, 452, 877-881.	13.7	611
130	The HP1–p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nature Structural and Molecular Biology, 2008, 15, 972-979.	3.6	127
131	Epigenetic memory: H3.3 steps in the groove. Nature Cell Biology, 2008, 10, 7-9.	4.6	6
132	Pericentric heterochromatin: dynamic organization during early development in mammals. Differentiation, 2008, 76, 15-23.	1.0	95
133	DNA Damage Leaves its Mark on Chromatin. Cell Cycle, 2007, 6, 2355-2359.	1.3	13
134	GENETICS: More Means of Regulating Genes. Science, 2007, 316, 1126-1127.	6.0	2
135	Chromatin Challenges during DNA Replication and Repair. Cell, 2007, 128, 721-733.	13.5	669
136	Regulation of Replication Fork Progression Through Histone Supply and Demand. Science, 2007, 318, 1928-1931.	6.0	407
137	HP1α guides neuronal fate by timing E2F-targeted genes silencing during terminal differentiation. EMBO Journal, 2007, 26, 3616-3628.	3.5	44
138	Histone chaperones: an escort network regulating histone traffic. Nature Structural and Molecular Biology, 2007, 14, 997-1007.	3.6	303
139	Marking histone H3 variants: How, when and why?. Trends in Biochemical Sciences, 2007, 32, 425-433.	3.7	155
140	Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma, 2007, 116, 403-415.	1.0	143
141	The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts. Chromosoma, 2007, 116, 487-496.	1.0	32
142	New Histone Incorporation Marks Sites of UV Repair in Human Cells. Cell, 2006, 127, 481-493.	13.5	228
143	Chromatin assembly: a basic recipe with various flavours. Current Opinion in Genetics and Development, 2006, 16, 104-111.	1.5	130
144	PTMs on H3 Variants before Chromatin Assembly Potentiate Their Final Epigenetic State. Molecular Cell, 2006, 24, 309-316.	4.5	361

#	Article	IF	CITATIONS
145	The replication kinase Cdc7â€Dbf4 promotes the interaction of the p150 subunit of chromatin assembly factor 1 with proliferating cell nuclear antigen. EMBO Reports, 2006, 7, 817-823.	2.0	77
146	In Vitro Techniques. , 2006, , 201-378.		2
147	Analysis of DNA Repair and Chromatin Assembly In Vitro Using Immobilized Damaged DNA Substrates. Methods in Molecular Biology, 2006, 314, 477-487.	0.4	6
148	CAF-1 Is Essential for Heterochromatin Organization in Pluripotent Embryonic Cells. PLoS Genetics, 2006, 2, e181.	1.5	149
149	Methods for Studying Chromatin Assembly Coupled to DNA Repair. Methods in Enzymology, 2006, 409, 358-374.	0.4	15
150	Chromatin Assembly of DNA Templates Microinjected Into Xenopus Oocytes. Methods in Molecular Biology, 2006, 322, 139-147.	0.4	2
151	The effects of histone deacetylase inhibitors on heterochromatin: implications for anticancer therapy?. EMBO Reports, 2005, 6, 520-524.	2.0	109
152	Human Asf1 Regulates the Flow of S Phase Histones during Replicational Stress. Molecular Cell, 2005, 17, 301-311.	4.5	241
153	Histone metabolic pathways and chromatin assembly factors as proliferation markers. Cancer Letters, 2005, 220, 1-9.	3.2	45
154	Compaction Kinetics on Single DNAs: Purified Nucleosome Reconstitution Systems versus Crude Extract. Biophysical Journal, 2005, 89, 3647-3659.	0.2	32
155	Analysis of DNA Repair and Chromatin Assembly In Vitro Using Immobilized Damaged DNA Substrates. , 2004, 281, 271-282.		8
156	Chromatin Assembly Factor-1, a Marker of Clinical Value to Distinguish Quiescent from Proliferating Cells. Cancer Research, 2004, 64, 2371-2381.	0.4	83
157	Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. Journal of Cell Biology, 2004, 166, 493-505.	2.3	435
158	HP1 and the dynamics of heterochromatin maintenance. Nature Reviews Molecular Cell Biology, 2004, 5, 296-305.	16.1	523
159	A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO Journal, 2004, 23, 3516-3526.	3.5	159
160	Bromodomains in living cells participate in deciphering the histone code. Trends in Cell Biology, 2004, 14, 279-281.	3.6	33
161	Histone chaperones, a supporting role in the limelight. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1677, 3-11.	2.4	277
162	Interplay between chromatin and cell cycle checkpoints in the context of ATR/ATM-dependent checkpoints. DNA Repair, 2004, 3, 969-978.	1.3	54

#	Article	IF	CITATIONS
163	Histone H3.1 and H3.3 Complexes Mediate Nucleosome Assembly Pathways Dependent or Independent of DNA Synthesis. Cell, 2004, 116, 51-61.	13.5	1,151
164	Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo. EMBO Journal, 2003, 22, 5163-5174.	3.5	149
165	DNA Synthesis-Dependent and -Independent Chromatin Assembly Pathways in Xenopus Egg Extracts. Methods in Enzymology, 2003, 375, 117-131.	0.4	19
166	Repairing DNA damage in chromatin. Biochimie, 2003, 85, 1133-1147.	1.3	60
167	Rad53. Cell, 2003, 115, 508-510.	13.5	5
168	When repair meets chromatin. EMBO Reports, 2002, 3, 28-33.	2.0	192
169	Human Asf1 and CAF†interact and synergize in a repairâ€coupled nucleosome assembly pathway. EMBO Reports, 2002, 3, 329-334.	2.0	268
170	HIRA Is Critical for a Nucleosome Assembly Pathway Independent of DNA Synthesis. Molecular Cell, 2002, 9, 1091-1100.	4.5	374
171	Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genetics, 2002, 30, 329-334.	9.4	621
172	Maintenance of Nucleolar Machineries and pre-rRNAs in Remnant Nucleolus of Erythrocyte Nuclei and Remodeling in Xenopus Egg Extracts. Experimental Cell Research, 2001, 269, 23-34.	1,2	13
173	The ins and outs of nucleosome assembly. Current Opinion in Genetics and Development, 2001, 11, 136-141.	1.5	137
174	Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biology, 2001, 3, 114-120.	4.6	340
175	The Ribosomal RNA Processing Machinery Is Recruited to the Nucleolar Domain before RNA Polymerase I during Xenopus laevis Development. Journal of Cell Biology, 2000, 149, 293-306.	2.3	54
176	Tetracycline-Regulated Gene Expression Switch in Xenopus laevis. Experimental Cell Research, 2000, 256, 392-399.	1.2	10
177	Hormone activation induces nucleosome positioning in vivo. EMBO Journal, 2000, 19, 1023-1033.	3.5	62
178	Duplication and Maintenance of Heterochromatin Domains. Journal of Cell Biology, 1999, 147, 1153-1166.	2.3	191
179	Nucleotide Excision Repair Coupled to Chromatin Assembly. , 1999, 119, 231-244.		11
180	Chromatin rearrangements during nucleotide excision repair. Biochimie, 1999, 81, 45-52.	1.3	33

#	Article	IF	CITATIONS
181	Assays for chromatin remodeling during DNA repair. Methods in Enzymology, 1999, 304, 333-351.	0.4	5
182	Remodeling nuclear organization during early development. Biology of the Cell, 1998, 90, 111-111.	0.7	0
183	Recruitment of Phosphorylated Chromatin Assembly Factor 1 to Chromatin after UV Irradiation of Human Cells. Journal of Cell Biology, 1998, 143, 563-575.	2.3	171
184	Presence of Pre-rRNAs before Activation of Polymerase I Transcription in the Building Process of Nucleoli during Early Development of Xenopus laevis. Journal of Cell Biology, 1998, 142, 1167-1180.	2.3	70
185	Chromatin Assembly Coupled to DNA Repair: A New Role for Chromatin Assembly Factor I. Cell, 1996, 86, 887-896.	13.5	324
186	The Heat Shock Response in Xenopus Oocytes, Embryos, and Somatic Cells: A Regulatory Role for Chromatin. Developmental Biology, 1995, 170, 62-74.	0.9	28
187	The origin replication complex (ORC): The stone that kills two birds. BioEssays, 1994, 16, 233-235.	1.2	2
188	Histone Acetylation Influences both Gene Expression and Development of Xenopus laevis. Developmental Biology, 1994, 165, 654-669.	0.9	130
189	Isolation of a potentially functional Y-box protein (MSY-1) processed pseudogene from mouse: evolutionary relationships within the EFIA/dbpB/YB-1 gene family. Gene, 1994, 141, 255-259.	1.0	10
190	TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature, 1993, 362, 475-477.	13.7	110
191	Chromatin Transitions during Early Xenopus Embryogenesis: Changes in Histone H4 Acetylation and in Linker Histone Type. Developmental Biology, 1993, 160, 214-227.	0.9	190
192	Nuclear Assembly, Structure, and Function: The Use of Xenopus in Vitro Systems. Experimental Cell Research, 1993, 205, 1-15.	1.2	115
193	Chromatin assembly on replicating DNAin vitro. Nucleic Acids Research, 1990, 18, 5767-5774.	6.5	109
194	Proto-oncogenes and embryonic development. Biochimie, 1988, 70, 895-899.	1.3	3
195	Oligonucleotide site-directed mutagenesis in Xenopus egg extracts. Nucleic Acids Research, 1988, 16, 8525-8539.	6.5	1