
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2726439/publications.pdf Version: 2024-02-01

FLISA MOLINADI

#	Article	IF	CITATIONS
1	Coherent ultrafast charge transfer in an organic photovoltaic blend. Science, 2014, 344, 1001-1005.	6.0	470
2	Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Physical Review B, 2005, 72, .	1.1	441
3	Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano, 2012, 6, 6930-6935.	7.3	410
4	Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory. Physical Review Letters, 1995, 75, 1819-1822.	2.9	325
5	Excitons in Carbon Nanotubes: AnAb InitioSymmetry-Based Approach. Physical Review Letters, 2004, 92, 196401.	2.9	269
6	Microscopic calculation of the electron-phonon interaction in quantum wells. Physical Review B, 1992, 45, 6747-6756.	1.1	241
7	Few-Particle Effects in Semiconductor Quantum Dots: Observation of Multicharged Excitons. Physical Review Letters, 2000, 84, 5648-5651.	2.9	239
8	Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nature Communications, 2013, 4, 1602.	5.8	239
9	GolP: An atomistic forceâ€field to describe the interaction of proteins with Au(111) surfaces in water. Journal of Computational Chemistry, 2009, 30, 1465-1476.	1.5	237
10	Optical properties of graphene nanoribbons: The role of many-body effects. Physical Review B, 2008, 77,	1.1	235
11	DFT Study of Cysteine Adsorption on Au(111). Journal of Physical Chemistry B, 2003, 107, 1151-1156.	1.2	200
12	Electron-phonon interaction in quasi-two-dimensional systems. Physical Review B, 1991, 44, 3463-3466.	1.1	177
13	Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing. Physical Review B, 2000, 62, R2263-R2266.	1.1	163
14	Anisotropy of surface optical properties from first-principles calculations. Physical Review B, 1990, 41, 9935-9946.	1.1	160
15	Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nature Communications, 2014, 5, 4253.	5.8	155
16	Solid State Effects on Exciton States and Optical Properties of PPV. Physical Review Letters, 2002, 88, 206403.	2.9	152
17	Tracking the coherent generation of polaron pairs in conjugated polymers. Nature Communications, 2016, 7, 13742.	5.8	149
18	Coulomb-Induced Suppression of Band-Edge Singularities in the Optical Spectra of Realistic Quantum-Wire Structures. Physical Review Letters, 1996, 76, 3642-3645.	2.9	137

#	Article	IF	CITATIONS
19	Mixing of Electronic States in Pentacene Adsorption on Copper. Physical Review Letters, 2007, 99, 046802.	2.9	132
20	Exciton Binding Energy in GaAs V-Shaped Quantum Wires. Physical Review Letters, 1994, 73, 2899-2902.	2.9	131
21	Potential energy surface for graphene on graphene: <i>Ab initio</i> derivation, analytical description, and microscopic interpretation. Physical Review B, 2012, 86, .	1.1	128
22	Phonon spectra of ultrathin GaAs/AlAs superlattices: Anab initiocalculation. Physical Review B, 1990, 41, 3870-3873.	1.1	116
23	Sliding Properties of MoS ₂ Layers: Load and Interlayer Orientation Effects. Journal of Physical Chemistry C, 2014, 118, 13809-13816.	1.5	106
24	High-Finesse Optical Quantum Gates for Electron Spins in Artificial Molecules. Physical Review Letters, 2003, 90, 206802.	2.9	91
25	Electron states of an Sb-ordered overlayer on GaAs(110). Physical Review B, 1983, 27, 1251-1258.	1.1	89
26	Theoretical study of the electronic structure of GaP(110). Physical Review B, 1981, 24, 6029-6042.	1.1	88
27	Calculated superlattice and interface phonons of InAs/GaSb superlattices. Physical Review B, 1986, 33, 8889-8891.	1.1	88
28	Effects of disorder on the Raman spectra of GaAs/AlAs superlattices. Physical Review B, 1992, 45, 4280-4288.	1.1	88
29	Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nature Communications, 2016, 7, 11010.	5.8	85
30	Towards Protein Field-Effect Transistors: Report and Model of a Prototype. Advanced Materials, 2005, 17, 816-822.	11.1	84
31	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. Nano Letters, 2016, 16, 3442-3447.	4.5	83
32	Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality. Physical Review B, 1999, 59, 10165-10175.	1.1	82
33	Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy. Chemical Science, 2014, 5, 4419-4423.	3.7	81
34	G-quartet biomolecular nanowires. Applied Physics Letters, 2002, 80, 3331-3333.	1.5	80
35	Confined longitudinal and transverse phonons in GaAs/AlAs superlattices. Superlattices and Microstructures, 1986, 2, 397-400.	1.4	78
36	Ab initiostudy of model guanine assemblies: The role ofï€â^ï€coupling and band transport. Physical Review B, 2001, 65, .	1.1	78

#	Article	IF	CITATIONS
37	Resonant quasiconfined optical phonons in semiconductor superlattices. Physical Review B, 1989, 39, 3923-3926.	1.1	76
38	Shape-Independent Scaling of Excitonic Confinement in Realistic Quantum Wires. Physical Review Letters, 1997, 78, 3527-3530.	2.9	76
39	Linear and nonlinear optical properties of realistic quantum-wire structures: The dominant role of Coulomb correlation. Physical Review B, 1996, 53, 16462-16473.	1.1	73
40	Electronic rectification in protein devices. Applied Physics Letters, 2003, 82, 472-474.	1.5	73
41	First-Principles Theory of Correlated Transport through Nanojunctions. Physical Review Letters, 2005, 94, 116802.	2.9	72
42	How To Identify Plasmons from the Optical Response of Nanostructures. ACS Nano, 2017, 11, 7321-7335.	7.3	72
43	In-plane Raman scattering of (001)-Si/Ge superlattices: Theory and experiment. Physical Review B, 1994, 49, 5406-5414.	1.1	71
44	A molecular state of correlated electrons in a quantum dot. Nature Physics, 2008, 4, 467-471.	6.5	70
45	Optical emission from small Si particles. Solid State Communications, 1997, 102, 545-549.	0.9	69
46	Coherent population transfer in coupled semiconductor quantum dots. Applied Physics Letters, 2000, 77, 1864.	1.5	69
47	Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion. Journal of the American Chemical Society, 2018, 140, 7803-7809.	6.6	68
48	Calculated phonon spectra of Si/Ge (001) superlattices: Features for interface characterization. Applied Physics Letters, 1989, 54, 1220-1222.	1.5	65
49	Magnetic States in Prismatic Core Multishell Nanowires. Nano Letters, 2009, 9, 1631-1635.	4.5	63
50	A monolayer transition-metal dichalcogenide as a topological excitonic insulator. Nature Nanotechnology, 2020, 15, 367-372.	15.6	61
51	Quantum dot states and optical excitations of edge-modulated graphene nanoribbons. Physical Review B, 2011, 84, .	1.1	59
52	Molecular phases in coupled quantum dots. Physical Review B, 2004, 69, .	1.1	58
53	Surface-Assisted Reactions toward Formation of Graphene Nanoribbons on Au(110) Surface. Journal of Physical Chemistry C, 2015, 119, 2427-2437.	1.5	57
54	Evidence for equilibrium exciton condensation in monolayer WTe2. Nature Physics, 2022, 18, 94-99.	6.5	55

#	Article	IF	CITATIONS
55	Electronic Properties of Polymer Crystals: The Effect of Interchain Interactions. Physical Review Letters, 2003, 90, 086401.	2.9	54
56	Local Optical Spectroscopy in Quantum Confined Systems: A Theoretical Description. Physical Review Letters, 1999, 82, 847-850.	2.9	53
57	First-principles comparative study on the interlayer adhesion and shear strength of transition-metal dichalcogenides and graphene. Physical Review B, 2015, 92, .	1.1	53
58	Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions. Journal of Physical Chemistry C, 2012, 116, 17328-17335.	1.5	52
59	Friction by Shear Deformations in Multilayer Graphene. Journal of Physical Chemistry C, 2012, 116, 21104-21108.	1.5	52
60	Coupled free-carrier and exciton relaxation in optically excited semiconductors. Physical Review B, 1996, 54, 4660-4673.	1.1	51
61	Interchain interaction and Davydov splitting in polythiophene crystals: An ab initio approach. Applied Physics Letters, 2002, 80, 4118-4120.	1.5	51
62	Quantifying the Plasmonic Character of Optical Excitations in Nanostructures. ACS Photonics, 2016, 3, 520-525.	3.2	51
63	Carbon nanotubes as excitonic insulators. Nature Communications, 2017, 8, 1461.	5.8	51
64	Superlattice Effects on Confined Phonons. Physical Review Letters, 1986, 56, 1751-1751.	2.9	50
65	Ultrafast carrier relaxation and vertical-transport phenomena in semiconductor superlattices: A Monte Carlo analysis. Physical Review B, 1995, 51, 16943-16953.	1.1	49
66	Quantum phases in artificial molecules. Solid State Communications, 2001, 119, 309-321.	0.9	49
67	Calculated longitudinal superlattice and interface phonons of superlattices. Superlattices and Microstructures, 1987, 3, 117-120.	1.4	48
68	Interface mode in Si/Ge superlattices: Theory and experiments. Physical Review B, 1993, 48, 8959-8962.	1.1	48
69	Cylindrical two-dimensional electron gas in a transverse magnetic field. Physical Review B, 2008, 78, .	1.1	48
70	Evidence of Correlation in Spin Excitations of Few-Electron Quantum Dots. Physical Review Letters, 2005, 95, 266806.	2.9	47
71	Light-Induced Field Enhancement in Nanoscale Systems from First-Principles: The Case of Polyacenes. ACS Photonics, 2014, 1, 1049-1058.	3.2	47
72	Direct experimental observation of fracton mode patterns in one-dimensional Cantor composites. Physical Review Letters, 1992, 68, 1555-1558.	2.9	46

#	Article	IF	CITATIONS
73	Spin-transport selectivity upon Co adsorption on antiferromagnetic graphene nanoribbons. Journal of Chemical Physics, 2010, 133, 124703.	1.2	45
74	Self-induced transparency in semiconductor quantum dots. Physical Review B, 2002, 65, .	1.1	44
75	Biexciton Stability in Carbon Nanotubes. Physical Review Letters, 2007, 99, 126806.	2.9	44
76	Optical Properties and Charge-Transfer Excitations in Edge-Functionalized All-Graphene Nanojunctions. Journal of Physical Chemistry Letters, 2011, 2, 1315-1319.	2.1	44
77	Microscopic calculation of the electron–optical-phonon interaction in ultrathin GaAs/AlxGa1â^'xAs alloy quantum-well systems. Physical Review B, 1995, 51, 7046-7057.	1.1	43
78	Multiple quantum phases in artificial double-dot molecules. Solid State Communications, 1999, 112, 151-155.	0.9	43
79	Phonon-induced electron relaxation in weakly confined single and coupled quantum dots. Physical Review B, 2006, 74, .	1.1	43
80	First-principles density-functional theory calculations of electron-transfer rates in azurin dimers. Journal of Chemical Physics, 2006, 124, 064501.	1.2	42
81	Electron-hole localization in coupled quantum dots. Physical Review B, 2002, 65, .	1.1	41
82	Imaging quasiparticle wave functions in quantum dots via tunneling spectroscopy. Physical Review B, 2005, 71, .	1.1	41
83	Protein–surface interactions: challenging experiments and computations. Journal of Molecular Recognition, 2010, 23, 259-262.	1.1	41
84	Infrared reflectivity by transverse-optical phonons in (GaAs)m/(AlAs)nultrathin-layer superlattices. Physical Review B, 1991, 43, 14754-14757.	1.1	38
85	Calculations of phonon spectra in Ill–V and Siî—,Ge superlattices: A tool for structural characterization. Surface Science, 1990, 228, 112-119.	0.8	36
86	Band structure and optical anisotropy in V-shaped and T-shaped semiconductor quantum wires. Physical Review B, 1997, 55, 7110-7123.	1.1	36
87	Phonon-assisted exciton formation and relaxation in GaAs/AlxGa1â^'xAs quantum wells. Physical Review B, 1997, 55, R16049-R16052.	1.1	36
88	Addition energies in semiconductor quantum dots: Role of electron–electron interaction. Applied Physics Letters, 1998, 72, 957-959.	1.5	36
89	Designing All-Graphene Nanojunctions by Covalent Functionalization. Journal of Physical Chemistry C, 2011, 115, 2969-2973.	1.5	36
90	Micro-Raman scattering in ultrathin-layer superlattices: Evidence of zone-center anisotropy of optical phonons. Physical Review B, 1993, 47, 1483-1488.	1.1	35

#	Article	IF	CITATIONS
91	Exciton formation and relaxation in GaAs epilayers. Physical Review B, 1998, 58, R13403-R13406.	1.1	35
92	Local absorption spectra of artificial atoms and molecules. Physical Review B, 2000, 62, 13657-13666.	1.1	34
93	Valence band spectroscopy in Vâ€grooved quantum wires. Applied Physics Letters, 1996, 69, 2965-2967.	1.5	33
94	Strong Exciton Binding in Quantum Structures through Remote Dielectric Confinement. Physical Review Letters, 1998, 80, 4995-4998.	2.9	33
95	Few-particle effects in the optical spectra of semiconductor quantum dots. Solid State Communications, 1999, 111, 187-192.	0.9	33
96	Effects of few-particle interaction on the atomiclike levels of a single strain-induced quantum dot. Physical Review B, 2000, 62, 1592-1595.	1.1	33
97	Reduced Electron Relaxation Rate in Multielectron Quantum Dots. Physical Review Letters, 2005, 95, 066806.	2.9	33
98	First-principles approach for the calculation of optical properties of one-dimensional systems with helical symmetry: The case of carbon nanotubes. Physical Review B, 2005, 72, .	1.1	33
99	Magnetic field dependence of triplet-singlet relaxation in quantum dots with spin-orbit coupling. Physical Review B, 2007, 75, .	1.1	33
100	Self-consistent pseudopotential calculation of the electronic properties of the InP (110) surface. Journal of Physics C: Solid State Physics, 1982, 15, 1099-1109.	1.5	32
101	Interplanar forces and phonon spectra of strained Si and Ge:Ab initiocalculations and applications to Si/Ge superlattices. Physical Review B, 1990, 42, 7090-7096.	1.1	32
102	Electron-phonon interactions in two-dimensional systems: a microscopic approach. Semiconductor Science and Technology, 1992, 7, B67-B72.	1.0	32
103	Competing mechanisms for singlet-triplet transition in artificial molecules. Physical Review B, 2004, 69, .	1.1	32
104	Optical Excitations and Field Enhancement in Short Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2012, 3, 924-929.	2.1	32
105	Correlation Effects in Wave Function Mapping of Molecular Beam Epitaxy Grown Quantum Dots. Nano Letters, 2007, 7, 2701-2706.	4.5	31
106	Phonons in thin GaAs quantum wires. Physical Review B, 1993, 47, 1695-1698.	1.1	30
107	Origin of surface anisotropies in the optical spectra of III-V compounds. Physical Review B, 1989, 39, 13005-13008.	1.1	29
108	Surface nanopatterning through styrene adsorption on Si(100). Physical Review B, 2006, 73, .	1.1	29

ELISA MOLINARI

#	Article	IF	CITATIONS
109	<i>Ab Initio</i> Simulation of Optical Limiting: The Case of Metal-Free Phthalocyanine. Physical Review Letters, 2014, 112, 198303.	2.9	29
110	Ultrafast relaxation of photoexcited carriers in semiconductor quantum wires: A Monte Carlo approach. Physical Review B, 1995, 52, 5183-5201.	1.1	27
111	Self-assembled guanine ribbons as wide-bandgap semiconductors. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 1236-1239.	1.3	27
112	Electron Channels in Biomolecular Nanowires. Journal of Physical Chemistry B, 2004, 108, 2509-2515.	1.2	27
113	Water-Mediated Electron Transfer between Protein Redox Centers. Journal of Physical Chemistry B, 2007, 111, 3774-3781.	1.2	27
114	Bonding and surface electronic structure of an Sb overlayer on GaP(110). Surface Science, 1987, 184, 449-462.	0.8	26
115	Reduced carrier cooling and thermalization in semiconductor quantum wires. Physical Review B, 1993, 47, 1632-1635.	1.1	26
116	Symmetry lowering of pentacene molecular states interacting with a Cu surface. Physical Review B, 2007, 76, .	1.1	26
117	Long range order in Al0.5Ga0.5As: Local density calculation of the electronic structure. Solid State Communications, 1985, 56, 125-126.	0.9	25
118	Atomic intermixing in short period GaAs/AlAs superlattices. Surface Science, 1992, 267, 171-175.	0.8	25
119	Raman signatures of classical and quantum phases in coupled dots: A theoretical prediction. Europhysics Letters, 2002, 58, 555-561.	0.7	25
120	Ab initiostudy of transport parameters in polymer crystals. Physical Review B, 2004, 69, .	1.1	25
121	Effect of electron-electron interaction on the phonon-mediated spin relaxation in quantum dots. Physical Review B, 2007, 76, .	1.1	25
122	Role of the electronic properties of azurin active site in the electron-transfer process. International Journal of Quantum Chemistry, 2005, 102, 328-342.	1.0	24
123	Stopband edges in the dispersion curves of Lamb waves propagating in piezoelectric periodical structures. Applied Physics Letters, 1988, 53, 1806-1808.	1.5	23
124	Optical near-field mapping of excitons and biexcitons in naturally occurring semiconductor quantum dots. Applied Physics Letters, 2004, 84, 3963-3965.	1.5	23
125	Evidence of ideal excitonic insulator in bulk MoS ₂ under pressure. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
	Electronic and optical properties of doped <mml:math< td=""><td></td><td></td></mml:math<>		

126 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn@.g/mml:msub></mm by many-body perturbation theory. Physical Review Materials, 2019, 3, .

#	Article	IF	CITATIONS
127	Planar force-constant method for lattice dynamics of superstructures. Physical Review B, 1990, 41, 8302-8312.	1.1	22
128	Vibrational properties of a continuous self-similar structure. Physical Review B, 1994, 49, 15067-15075.	1.1	22
129	Dominance of charged excitons in single-quantum-dot photoluminescence spectra. Physical Review B, 2002, 66, .	1.1	22
130	Unraveling effects of disorder on the electronic structure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>SiO </mml:mtext> </mml:mrow> <mml:mn first principles. Physical Review B, 2010, 81, .</mml:mn </mml:msub></mml:mrow></mml:math 	>2 <td>nn≯≹/mml:ms</td>	nn≯≹/mml:ms
131	Intermolecular conical intersections in molecular aggregates. Nature Nanotechnology, 2021, 16, 63-68.	15.6	22
132	Ab Initio Study of Chemisorption Reactions for Carboxylic Acids on Hydrogenated Silicon Surfaces. Journal of Physical Chemistry B, 2004, 108, 17278-17280.	1.2	21
133	Quantum interferences in the Raman cross section for the radial breathing mode in metallic carbon nanotubes. Physical Review B, 2005, 71, .	1.1	21
134	Dark-State Luminescence of Macroatoms at the Near Field. Physical Review Letters, 2005, 95, 216802.	2.9	21
135	A coupled-mode theory for periodic piezoelectric composites. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1989, 36, 50-56.	1.7	20
136	Cation interdiffusion in GaAsâ€AlAs superlattices measured with Raman spectroscopy. Applied Physics Letters, 1991, 59, 2859-2861.	1.5	20
137	Single-electron charging in quantum dots with large dielectric mismatch. Physical Review B, 2001, 63, .	1.1	20
138	Anisotropy and Size Effects on the Optical Spectra of Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2014, 118, 6507-6513.	1.1	20
139	Field-controlled suppression of phonon-induced transitions in coupled quantum dots. Applied Physics Letters, 2004, 85, 4729-4731.	1.5	19
140	Optical Properties of Bilayer Graphene Nanoflakes. Journal of Physical Chemistry C, 2014, 118, 23219-23225.	1.5	19
141	Imaging correlated wave functions of few-electron quantum dots: Theory and scanning tunneling spectroscopy experiments. Journal of Applied Physics, 2007, 101, 081714.	1.1	18
142	Interaction of electrons with interface phonons in GaAs/AlAs and GaAs/AlGaAs heterostructures. Semiconductor Science and Technology, 1992, 7, B116-B119.	1.0	17
143	Low threshold subharmonic generation in composite structures with Cantor-like code. Physical Review Letters, 1992, 69, 3318-3321.	2.9	17
144	Optical spectra of nitride quantum dots: Quantum confinement and electron–hole coupling. Applied Physics Letters, 1999, 75, 3449-3451.	1.5	17

#	Article	IF	CITATIONS
145	Microscopic calculation of differential reflectivity of GaP(110). Surface Science, 1987, 189-190, 1028-1032.	0.8	16
146	Electron-phonon interaction in two-dimensional systems: A microscopic approach. Superlattices and Microstructures, 1991, 10, 471-478.	1.4	16
147	Theory of excitonic confinement in semiconductor quantum wires. Journal of Physics Condensed Matter, 1999, 11, 5969-5988.	0.7	16
148	Enhancement of Coulomb interactions in semiconductor nanostructures by dielectric confinement. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 482-485.	1.3	16
149	Electronic properties of guanine-based nanowires. Solid State Communications, 2004, 131, 557-564.	0.9	16
150	Water Effects on Electron Transfer in Azurin Dimers. Journal of Physical Chemistry B, 2006, 110, 23796-23800.	1.2	16
151	Finiteâ€size effects in the frequency response of piezoelectric composite plates. Journal of Applied Physics, 1989, 66, 2828-2832.	1.1	15
152	SiO ₂ in density functional theory and beyond. Physica Status Solidi (B): Basic Research, 2011, 248, 1061-1066.	0.7	15
153	GaAs/AlAs monolayer superlattices: A new candidate for a highly spin-polarized electron source. Solid State Communications, 1987, 62, 1-3.	0.9	14
154	Tailoring of light emission properties of functionalized oligothiophenes. Applied Physics Letters, 2001, 79, 2505-2507.	1.5	14
155	The effect of dielectric polarization-induced surface states on many-body configurations in a quantum dot. Semiconductor Science and Technology, 2002, 17, 1302-1311.	1.0	14
156	Ab-initio study of excitonic effects in conventional and organic semiconductors. Physica Status Solidi (B): Basic Research, 2005, 242, 1754-1758.	0.7	14
157	Effect of the Coulomb interaction on the electron relaxation of weakly-confined quantum dot systems using the full configuration interaction approach. Physical Review B, 2006, 74, .	1.1	14
158	Phonons in Si/GaAs superlattices. Physical Review B, 1992, 46, 7296-7299.	1.1	13
159	InAs/GaSb(001) valenceâ€band offset: Independence of interface composition and strain. Applied Physics Letters, 1996, 69, 3218-3220.	1.5	13
160	Quantum interference in nanometric devices: Ballistic transport across arrays of T-shaped quantum wires. Applied Physics Letters, 1997, 71, 1519-1521.	1.5	13
161	Neutral and charged electron-hole complexes in artificial molecules: Quantum transitions induced by the in-plane magnetic field. Physical Review B, 2004, 70, .	1.1	13
162	Excitons in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3204-3208.	0.7	13

#	Article	IF	CITATIONS
163	Biomolecular Electronic Devices Based on Selfâ€Organized Deoxyguanosine Nanocrystals. Annals of the New York Academy of Sciences, 2002, 960, 184-192.	1.8	13
164	First-principles calculation of anisotropic reflectance at the GaAs(110) surface. Surface Science, 1989, 211-212, 518-523.	0.8	12
165	Si-GaAs(001) superlattice structure. Journal of Crystal Growth, 1993, 127, 121-125.	0.7	12
166	Local optical spectroscopy of semiconductor nanostructures in the linear regime. Physical Review B, 2000, 62, 8204-8211.	1.1	11
167	Suppression of acoustic-phonon-induced electron transitions in coupled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 427-431.	1.3	11
168	Piezoelectric plate resonances due to first Lamb symmetrical mode. Journal of Applied Physics, 1988, 64, 2238-2240.	1.1	10
169	Siâ€GaAs(001) superlattices. Applied Physics Letters, 1992, 61, 1570-1572.	1.5	10
170	Tailoring optical properties and stimulated emission in nanostructured polythiophene. Scientific Reports, 2019, 9, 7370.	1.6	10
171	Frequency dependence in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>Wsimple using a multipole approximation. Physical Review B, 2021, 104, .</mml:mi></mml:mrow></mml:math 	mi> õmml:r	mro v ø>
172	Nanoscale compositional fluctuations in multiple InGaAs/GaAs quantum wires. Journal of Applied Physics, 2000, 87, 2261-2264.	1.1	9
173	Optically detected single-electron charging in a quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 95-100.	1.3	9
174	Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Letters, 2022, 22, 2971-2977.	4.5	9
175	Phonons in semiconductor superlattices. Superlattices and Microstructures, 1988, 4, 449-457.	1.4	8
176	Hydrogen adsorption on compound semiconductor surfaces. Vacuum, 1990, 41, 663-666.	1.6	8
177	Optical phonon probes of the lateral scale of interface roughness: A theoretical investigation. Solid-State Electronics, 1994, 37, 621-624.	0.8	8
178	V-grooved quantum wires as prototypes of 1D-systems: Single particle properties and correlation effects. Solid-State Electronics, 1996, 40, 249-255.	0.8	8
179	Correlation Effects in Quantum Dot Wave Function Imaging. Japanese Journal of Applied Physics, 2006, 45, 1966-1969.	0.8	8
180	Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach. Physical Review B, 2019, 100, .	1.1	8

#	Article	IF	CITATIONS
181	Vibrational properties of Si/Ge superlattices: Theory and in-plane Raman scattering experiments. Solid-State Electronics, 1994, 37, 757-760.	0.8	7
182	Phonons and electron-phonon interaction in GaAs quantum wires. Solid-State Electronics, 1994, 37, 761-764.	0.8	7
183	Directionality of acoustic-phonon emission in weakly confined semiconductor quantum dots. Physical Review B, 2007, 75, .	1.1	7
184	Oxygen-mediated electron transport through hybrid silicon–organic interfaces. Nanotechnology, 2008, 19, 285201.	1.3	7
185	An investigation of carrier dynamics in semiconductor quantum wires following femtosecond laser excitation. Semiconductor Science and Technology, 1994, 9, 871-874.	1.0	6
186	Excitonic and biexcitonic effects in the coherent optical response of semiconductor quantum dots. Physica B: Condensed Matter, 1999, 272, 1-4.	1.3	6
187	Ab-initio study of Coulomb-correlated optical properties in conjugated polymers. Synthetic Metals, 2001, 119, 257-258.	2.1	6
188	Charge transport and radiative recombination in polythiophene crystals: a first-principles study. Synthetic Metals, 2003, 139, 755-757.	2.1	6
189	Two-photon photoluminescence and exciton binding energies in single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 2428-2435.	0.7	6
190	First-principles investigation of functionalization-defects on silicon surfaces. Surface Science, 2006, 600, 3892-3897.	0.8	6
191	Optical properties of oneâ€dimensional graphene polymers: the case of polyphenanthrene. Physica Status Solidi (B): Basic Research, 2007, 244, 4124-4128.	0.7	6
192	Intrinsic edge excitons in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2020, 101, .</mml:mn></mml:msub></mml:math 	:m n.ı <td>nl:nasub></td>	nl :na sub>
193	Excitonic effects in graphene-like <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">C<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">N</mml:mi </mml:mrow>. Physical Review Materials. 2022. 6</mml:math 	0.9	6
194	Anomalous non-equilibrium response in black phosphorus to sub-gap mid-infrared excitation. Nature Communications, 2022, 13, 2667.	5.8	6
195	Anisotropy in the optical spectrum of the GaAs(110) surface. Physical Review Letters, 1990, 65, 937-937.	2.9	5
196	Engineering the strain field for the control of quantum confinement: An analytical model for arbitrary shape nanostructures. Journal of Applied Physics, 1998, 84, 3437-3441.	1.1	5
197	Spin–spin interaction in artificial molecules with in-plane magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 482-485.	1.3	5
198	Optical excitations of quasi-one-dimensional systems: carbon nanotubes versus polymers and semiconductor wires. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3602-3610.	0.8	5

#	Article	IF	CITATIONS
199	Interaction-Driven Giant Orbital Magnetic Moments in Carbon Nanotubes. Physical Review Letters, 2018, 121, 127704.	2.9	5
200	Adsorption and Motion of Single Molecular Motors on TiO2(110). Journal of Physical Chemistry C, 2020, 124, 24776-24785.	1.5	5
201	Band structure modulation by methoxy-functionalization of graphene nanoribbons. Journal of Materials Chemistry C, 2022, 10, 4173-4181.	2.7	5
202	Surface confined phonons in semiconductor superlattices. Surface Science, 1989, 211-212, 354-360.	0.8	4
203	Phonons in quantum wires. , 1992, 1677, 55.		4
204	<title>Monte Carlo simulation of a "true" quantum wire</title> . , 1992, 1676, 161.		4
205	Threshold lowering for subharmonic generation in Cantor-like composite structures. Physica A: Statistical Mechanics and Its Applications, 1992, 191, 540-544.	1.2	4
206	Hot Phonons in Quantum Wires: A Monte Carlo Investigation. Europhysics Letters, 1994, 28, 277-282.	0.7	4
207	Relationship between structural and optoelectronic properties in semiconducting polymers. Semiconductor Science and Technology, 2004, 19, S362-S364.	1.0	4
208	Quantum phases of correlated electrons in artificial molecules under magnetic fields. Physical Review B, 2006, 74, .	1.1	4
209	Exact biexciton binding energy in carbon nanotubes using a quantum Monte Carlo approach. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1997-1999.	1.3	4
210	Competitive Chemisorption of Bifunctional Carboxylic Acids on H:Si(100): A First-Principles Study. Journal of Physical Chemistry C, 2008, 112, 10167-10175.	1.5	4
211	Publisher's Note: Optical properties of graphene nanoribbons: The role of many-body effects [Phys. Rev. B 77, 041404(R) (2008)]. Physical Review B, 2008, 77, .	1.1	4
212	Roadmap on bio-nano-photonics. Journal of Optics (United Kingdom), 2021, 23, 073001.	1.0	4
213	Aspects of self-consistent procedures in surface pseudopotential calculations. Journal of Physics C: Solid State Physics, 1982, 15, 3627-3637.	1.5	3
214	Strong exciton binding in hybrid GaAs-based nanostructures. Physica B: Condensed Matter, 1999, 272, 518-521.	1.3	3
215	On the electronic structure analysis for one redox-active molecule. Chemical Physics Letters, 2004, 393, 118-123.	1.2	3
216	Spin excitations in few-electrons AlGaAs/GaAs quantum dots probed by inelastic light scattering. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 304-307.	1.3	3

#	Article	IF	CITATIONS
217	Electronic and magnetic states in core multishell nanowires: Edge localization, Landau levels and Aharonov-Bohm oscillations. Journal of Physics: Conference Series, 2009, 193, 012027.	0.3	3
218	Concavity Effects on the Optical Properties of Aromatic Hydrocarbons. Journal of Physical Chemistry C, 2013, 117, 12909-12915.	1.5	3
219	Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy. Nanoscale, 2020, 12, 19681-19688.	2.8	3
220	Optical Spectroscopy on Single Quantum Dots: Charged Excitons. , 2001, , 63-74.		3
221	Few-electron liquid and solid phases in artificial molecules at high magnetic field. , 2003, , 361-371.		3
222	Infrared reflectivity and Raman spectra of (GaAs)m(AlAs)n ultrathin layer superlattices. Surface Science, 1992, 267, 430-433.	0.8	2
223	Vibrational properties of Si/GaAs superlattices. Superlattices and Microstructures, 1992, 12, 429-432.	1.4	2
224	Phonons and Electron-Phonon Interaction in Low-Dimensional Structures. NATO ASI Series Series B: Physics, 1995, , 161-203.	0.2	2
225	Theoretical analysis of the optical spectra of InxGa1â^'xN quantum dots in InyGa1â^'yN layers. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 934-938.	1.3	2
226	Local absorption spectra of single and coupled semiconductor quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 266-269.	1.7	2
227	Interacting electrons in artificial molecules with magnetic field of arbitrary direction. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 327-330.	1.3	2
228	Correlated states and spin transitions in nanofabricated AlGaAs/GaAs few-electron quantum dots probed by inelastic light scattering. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1867-1869.	1.3	2
229	Spin relaxation due to spin–orbit coupling in multi-electron quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1804-1806.	1.3	2
230	Probing collective modes of correlated states of few electrons in semiconductor quantum dots. Solid State Communications, 2009, 149, 1436-1442.	0.9	2
231	Green function approach to realistic calculations of the electronic structure of semiconductor interfaces. Surface Science, 1985, 152-153, 1178-1184.	0.8	1
232	Metastable transition of EL2 in GaAs: The electron-phonon-coupling channel. Solid State Communications, 1994, 89, 493-496.	0.9	1
233	Strong coupling and dressed states of an interface island in a pillar semiconductor microcavity. Physical Review B, 2001, 64, .	1.1	1
234	Magnetic-field-dependent optical properties and interdot correlations in coupled quantum dots. Journal of Luminescence, 2005, 112, 109-112.	1.5	1

#	Article	IF	CITATIONS
235	Phonon-induced electron relaxation in correlated quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3660-3663.	0.8	1
236	Response to "Comment on â€~Field-controlled suppression of phonon-induced transitions in coupled quantum dots' [Appl. Phys. Lett. 88, 4729 (2006)]― Applied Physics Letters, 2006, 88, 196102.	1.5	1
237	Carrier states on cylindrical 2DEGs in a magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2040-2042.	1.3	1
238	Quantum coherence controls the charge separation in a prototypical artificial light harvesting system. , 2013, , .		1
239	Collective Properties of Electrons and Holes in Coupled Quantum Dots. , 2005, , 269-283.		1
240	Coherent vibronic coupling in a conjugated polymer at room temperature. , 2016, , .		1
241	Vibrational properties of isolated AlAs monolayers embedded in GaAs: a theoretical study of the effects of disorder. Applied Surface Science, 1992, 56-58, 617-621.	3.1	0
242	The 1993 Italgas prizes for research and innovation. Solid State Communications, 1993, 88, III.	0.9	0
243	Magnetic-field effects in the luminescence of V-shaped quantum wires. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1681-1685.	0.4	0
244	Fast exciton and free-carrier kinetics in semiconductors: a Monte Carlo simulation. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1717-1722.	0.4	0
245	Few-Particle Effects in Nonlinear Optical Spectra of Semiconductor Quantum Dots. Materials Research Society Symposia Proceedings, 1999, 571, 241.	0.1	0
246	Few-particle states and quantum-information processing in quantum dots. , 0, , .		0
247	Weak and Strong Coupling for Quantum Boxes in Pillar Microcavities. Physica Status Solidi A, 2002, 190, 375-378.	1.7	0
248	High-finesse optical quantum gates for electron spins in artificial molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1061-1064.	1.3	0
249	Biexcitons in artificial molecules with in-plane magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 308-311.	1.3	0
250	Saturated carboxylic acids on silicon: a first-principles study. AIP Conference Proceedings, 2005, , .	0.3	0
251	Light-Emitting Polymers: a First-Principles Analysis of Singlet-Exciton Harvesting in PPV. AIP Conference Proceedings, 2005, , .	0.3	0
252	A symmetrized-basis approach to excitons in carbon nanotubes. AIP Conference Proceedings, 2005, , .	0.3	0

#	Article	IF	CITATIONS
253	Controlling spin phases of few electrons in artificial molecules by magnetic fields. Physica Status Solidi (B): Basic Research, 2006, 243, 3874-3878.	0.7	0
254	Two-photon photoluminescence and exciton binding in single-walled carbon nanotubes: Experiment and theory. , 2006, , .		0
255	Optical near-field mapping of bright and dark quantum dot states. AIP Conference Proceedings, 2007, , .	0.3	0
256	Quantum coherence controls the charge separation in a prototypical artificial light harvesting system. EPJ Web of Conferences, 2013, 41, 08017.	0.1	0
257	Coherent ultrafast charge transfer in an organic photovoltaic blend. , 2014, , .		0
258	Probing spin states in AlGaAs/GaAs few-electron quantum dots by inelastic light scattering. AIP Conference Proceedings, 2007, , .	0.3	0
259	Probing Coherent Ultrafast Exciton Dissociation in a Polymer:Fullerene Photovoltaic Absorber. , 2015, , .		0
260	Coherent ultrafast polaron pair formation in a conjugated polymer at room temperature. , 2016, , .		0
261	Anomalous screening in narrow-gap carbon nanotubes. Physical Review B, 2022, 105, .	1.1	0
262	Graphene decoupling through oxygen intercalation on Gr/Co and Gr/Co/Ir interfaces. Physical Review Materials, 2022, 6, .	0.9	0