
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2726155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology, 2009, 100, 717-723.	4.8	477
2	Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology, 2007, 98, 2879-2885.	4.8	293
3	Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry, 2010, 79, 228-233.	2.4	249
4	Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Research, 2005, 39, 1123-1133.	5.3	238
5	Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technology, 2010, 101, 1183-1189.	4.8	228
6	Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology, 2009, 100, 5114-5121.	4.8	162
7	Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells. Electrochimica Acta, 2015, 166, 320-328.	2.6	137
8	Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater. Renewable and Sustainable Energy Reviews, 2017, 76, 1022-1031.	8.2	137
9	Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Advances, 2013, 3, 7902.	1.7	135
10	Enhancing performance of microbial fuel cell by using graphene supported V2O5-nanorod catalytic cathode. Electrochimica Acta, 2017, 228, 513-521.	2.6	133
11	Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 2022, 316, 115295.	3.8	131
12	Application of electro-active biofilms. Biofouling, 2010, 26, 57-71.	0.8	127
13	Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Materials Chemistry and Physics, 2020, 239, 122025.	2.0	127
14	Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle. Npj Clean Water, 2020, 3, .	3.1	118
15	Graphene Oxide-Impregnated PVA–STA Composite Polymer Electrolyte Membrane Separator for Power Generation in a Single-Chambered Microbial Fuel Cell. Industrial & Engineering Chemistry Research, 2013, 52, 11597-11606.	1.8	107
16	Waste-derived biochar: Applications and future perspective in microbial fuel cells. Bioresource Technology, 2020, 312, 123587.	4.8	107
17	Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. International Journal of Hydrogen Energy, 2018, 43, 7501-7510.	3.8	96
18	Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. International Journal of Hydrogen Energy, 2012, 37, 9383-9392.	3.8	95

#	Article	IF	CITATIONS
19	Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications. Electrochemistry Communications, 2009, 11, 1547-1549.	2.3	91
20	V 2 O 5 microflower decorated cathode for enhancing power generation in air-cathode microbial fuel cell treating fish market wastewater. International Journal of Hydrogen Energy, 2016, 41, 3638-3645.	3.8	91
21	Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustainable Energy Technologies and Assessments, 2018, 26, 77-82.	1.7	89
22	Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells. Bioresource Technology, 2014, 154, 330-335.	4.8	88
23	Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder. International Journal of Hydrogen Energy, 2010, 35, 5681-5686.	3.8	85
24	A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell. Materials Chemistry and Physics, 2016, 182, 86-93.	2.0	85
25	Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. Journal of Water Process Engineering, 2020, 38, 101566.	2.6	85
26	Improving performance of microbial fuel cell with ultrasonication pre-treatment of mixed anaerobic inoculum sludge. Bioresource Technology, 2010, 101, 562-567.	4.8	84
27	Improving performance of microbial fuel cell while controlling methanogenesis by Chaetoceros pretreatment of anodic inoculum. Bioresource Technology, 2015, 180, 66-71.	4.8	83
28	Quorum-sensing mediated signals: A promising multi-functional modulators for separately enhancing algal yield and power generation in microbial fuel cell. Bioresource Technology, 2019, 294, 122138.	4.8	81
29	Performance of low cost scalable air–cathode microbial fuel cell made from clayware separator using multiple electrodes. Bioresource Technology, 2015, 182, 373-377.	4.8	80
30	Required minimum granule size in UASB reactor and characteristics variation with size. Bioresource Technology, 2007, 98, 994-999.	4.8	79
31	A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell. Biochemical Engineering Journal, 2019, 148, 170-177.	1.8	79
32	Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell. Ionics, 2020, 26, 3061-3072.	1.2	78
33	Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnology Advances, 2019, 37, 107420.	6.0	71
34	A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). Journal of Environmental Management, 2021, 300, 113694.	3.8	69
35	Analysis, evaluation, and optimization of kinetic parameters for performance appraisal and design of UASB reactors. Bioresource Technology, 2008, 99, 2132-2140.	4.8	65
36	Biofouling inhibition and enhancing performance of microbial fuel cell using silver nano-particles as fungicide and cathode catalyst. Bioresource Technology, 2016, 220, 183-189.	4.8	65

#	Article	IF	CITATIONS
37	Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chemical Physics Letters, 2020, 751, 137536.	1.2	65
38	Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water. Aquacultural Engineering, 2014, 61, 17-26.	1.4	63
39	Simultaneous organic matter removal and disinfection of wastewater with enhanced power generation in microbial fuel cell. Bioresource Technology, 2014, 163, 328-334.	4.8	63
40	Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell using low cost coconut shell as membrane separator. Biochemical Engineering Journal, 2018, 133, 205-213.	1.8	63
41	Synthesis and Application of Zirconium Metal–Organic Framework in Microbial Fuel Cells as a Cost-Effective Oxygen Reduction Catalyst with Competitive Performance. ACS Applied Energy Materials, 2020, 3, 3512-3520.	2.5	63
42	ANAMMOX-denitrification biomass in microbial fuel cell to enhanceÂthe electricity generation and nitrogen removal efficiency. Biodegradation, 2020, 31, 249-264.	1.5	62
43	Effect of operating temperature on performance of microbial fuel cell. Water Science and Technology, 2011, 64, 917-922.	1.2	59
44	On-Site Sanitary Wastewater Treatment System Using 720-L Stacked Microbial Fuel Cell: Case Study. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	59
45	Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for improved microbial fuel cell performance. International Journal of Hydrogen Energy, 2018, 43, 23027-23035.	3.8	58
46	Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4. Electrochimica Acta, 2019, 310, 173-183.	2.6	58
47	A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell. Journal of Power Sources, 2020, 449, 227560.	4.0	58
48	Architectural adaptations of microbial fuel cells. Applied Microbiology and Biotechnology, 2018, 102, 9419-9432.	1.7	57
49	Review—Microbial Electrosynthesis: A Way Towards The Production of Electro-Commodities Through Carbon Sequestration with Microbes as Biocatalysts. Journal of the Electrochemical Society, 2020, 167, 155510.	1.3	57
50	Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquacultural Engineering, 2013, 57, 101-107.	1.4	56
51	Wastewater treatment in pilotâ€scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications. Environmental Progress and Sustainable Energy, 2016, 35, 1809-1817.	1.3	56
52	Carbon supported nickel-phthalocyanine/MnOx as novel cathode catalyst for microbial fuel cell application. International Journal of Hydrogen Energy, 2017, 42, 23085-23094.	3.8	56
53	Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell. Bioresource Technology, 2015, 182, 225-231.	4.8	55
54	Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell. Bioresource Technology, 2015, 176, 8-14.	4.8	55

#	Article	IF	CITATIONS
55	Start-Up of Anammox SBR from Non-Specific Inoculum and Process Acceleration Methods by Hydrazine. Water (Switzerland), 2021, 13, 350.	1.2	55
56	Enhancing Electrogenesis by Pretreatment of Mixed Anaerobic Sludge To Be Used as Inoculum in Microbial Fuel Cells. Energy & Fuels, 2015, 29, 3518-3524.	2.5	54
57	Simultaneous Wastewater Treatment, Algal Biomass Production and Electricity Generation in Clayware Microbial Carbon Capture Cells. Applied Biochemistry and Biotechnology, 2017, 183, 1076-1092.	1.4	54
58	Synthesis of bimetallic iron ferrite Co0.5Zn0.5Fe2O4 as a superior catalyst for oxygen reduction reaction to replace noble metal catalysts in microbial fuel cell. International Journal of Hydrogen Energy, 2018, 43, 19196-19205.	3.8	54
59	Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell. Materials Science for Energy Technologies, 2020, 3, 104-115.	1.0	54
60	Ameliorating effect of nitrate on nitrite inhibition for denitrifying P-accumulating organisms. Science of the Total Environment, 2021, 797, 149133.	3.9	54
61	Novel Sulfonated Co-poly(ether imide)s Containing Trifluoromethyl, Fluorenyl and Hydroxyl Groups for Enhanced Proton Exchange Membrane Properties: Application in Microbial Fuel Cell. ACS Applied Materials & Interfaces, 2018, 10, 14803-14817.	4.0	53
62	Enhancing the performance of microbial fuel cell using Ag Pt bimetallic alloy as cathode catalyst and anti-biofouling agent. International Journal of Hydrogen Energy, 2018, 43, 19650-19660.	3.8	52
63	Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst. Bioresource Technology, 2015, 191, 110-116.	4.8	51
64	Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review. Materials Science for Energy Technologies, 2019, 2, 687-696.	1.0	51
65	Ameliorated performance of a microbial fuel cell operated with an alkali pre-treated clayware ceramic membrane. International Journal of Hydrogen Energy, 2020, 45, 16787-16798.	3.8	50
66	Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts. Bioresource Technology, 2017, 238, 568-574.	4.8	48
67	Electricity generation through a photo sediment microbial fuel cell using algae at the cathode. Water Science and Technology, 2017, 76, 3269-3277.	1.2	47
68	Influence of ceramic separator's characteristics on microbial fuel cell performance. Journal of Electrochemical Science and Engineering, 2014, 4, .	1.6	45
69	Carbon Supported Cu-Sn Bimetallic Alloy as an Excellent Low-Cost Cathode Catalyst for Enhancing Oxygen Reduction Reaction in Microbial Fuel Cell. Journal of the Electrochemical Society, 2018, 165, F621-F628.	1.3	45
70	Production of Hydrogen Peroxide Using Various Metal-Based Catalysts in Electrochemical and Bioelectrochemical Systems: Mini Review. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	45
71	Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell. International Journal of Hydrogen Energy, 2019, 44, 22218-22222.	3.8	44
72	Microbial fuel cell coupled Fenton oxidation for the cathodic degradation of emerging contaminants from wastewater: Applications and challenges. Environmental Research, 2022, 204, 112135.	3.7	44

#	Article	IF	CITATIONS
73	Simultaneous sewage treatment and electricity generation in membrane-less microbial fuel cell. Water Science and Technology, 2008, 58, 37-43.	1.2	43
74	Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis. Water Science and Technology, 2018, 77, 1293-1302.	1.2	43
75	Improving Performance of MFC by Design Alteration and Adding Cathodic Electrolytes. Applied Biochemistry and Biotechnology, 2008, 151, 319-332.	1.4	42
76	Cow's urine as a yellow gold for bioelectricity generation in low cost clayware microbial fuel cell. Energy, 2016, 113, 76-84.	4.5	42
77	Effective ammonium removal by anaerobic oxidation in microbial fuel cells. Environmental Technology (United Kingdom), 2015, 36, 767-775.	1.2	41
78	A green and sustainable approach on statistical optimization of laccase mediated delignification of sugarcane tops for enhanced saccharification. Journal of Environmental Management, 2018, 217, 700-709.	3.8	41
79	<i>Azadirachta indica</i> leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst. Sustainable Energy and Fuels, 2019, 3, 3430-3440.	2.5	41
80	Performance Evaluation of Microbial Fuel Cell Operated with Pd or MnO ₂ as Cathode Catalyst and <i>Chaetoceros</i> Pretreated Anodic Inoculum. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	41
81	Palladium-Supported Zirconia-Based Catalytic Degradation of Rhodamine-B Dye from Wastewater. Water (Switzerland), 2021, 13, 1522.	1.2	41
82	Controlling methanogenesis and improving power production of microbial fuel cell by lauric acid dosing. Water Science and Technology, 2014, 70, 1363-1369.	1.2	40
83	Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustainable Energy and Fuels, 2019, 3, 3525-3537.	2.5	40
84	Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration. Process Biochemistry, 2021, 101, 237-246.	1.8	37
85	A novel bio-electro-Fenton process for eliminating sodium dodecyl sulphate from wastewater using dual chamber microbial fuel cell. Bioresource Technology, 2021, 341, 125850.	4.8	37
86	Removal of caffeine from wastewater using electrochemical advanced oxidation process: A mini review. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100129.	2.9	35
87	Synthesis of Tungstate Oxide/Bismuth Tungstate Composite and Application in Microbial Fuel Cell as Superior Low-Cost Cathode Catalyst than Platinum. Journal of the Electrochemical Society, 2018, 165, G146-G153.	1.3	34
88	SiOC-based polymer derived-ceramic porous anodes for microbial fuel cells. Biochemical Engineering Journal, 2019, 148, 29-36.	1.8	33
89	Design of Clayware Separator-Electrode Assembly for Treatment of Wastewater in Microbial Fuel Cells. Applied Biochemistry and Biotechnology, 2014, 173, 378-390.	1.4	32
90	Reduction of start-up time through bioaugmentation process in microbial fuel cells using an isolate from dark fermentative spent media fed anode. Water Science and Technology, 2015, 72, 106-115.	1.2	32

#	Article	IF	CITATIONS
91	Improved Wastewater Treatment by Combined System of Microbial Fuel Cell with Activated Carbon/TiO2 Cathode Catalyst and Membrane Bioreactor. Journal of the Institution of Engineers (India): Series A, 2019, 100, 675-682.	0.6	32
92	Role of applied potential on microbial electrosynthesis of organic compounds through carbon dioxide sequestration. Journal of Environmental Chemical Engineering, 2020, 8, 104028.	3.3	32
93	Preparation of Activated Carbon from the Wood of Paulownia tomentosa as an Efficient Adsorbent for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater. Water (Switzerland), 2021, 13, 1453.	1.2	32
94	Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India. Environmental Science and Pollution Research, 2018, 25, 2552-2569.	2.7	31
95	Comprehensive review on treatment of high-strength distillery wastewater in advanced physico-chemical and biological degradation pathways. International Journal of Environmental Science and Technology, 2019, 16, 527-546.	1.8	31
96	Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell. Sustainable Energy Technologies and Assessments, 2020, 42, 100808.	1.7	31
97	Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. International Journal of Environmental Technology and Management, 2020, 23, 50.	0.1	31
98	Optimal cathodic imposed potential and appropriate catalyst for the synthesis of hydrogen peroxide in microbial electrolysis cell. Chemical Physics Letters, 2020, 754, 137690.	1.2	31
99	Pre-treatment of anodic inoculum with nitroethane to improve performance of a microbial fuel cell. Water Science and Technology, 2018, 77, 2491-2496.	1.2	30
100	Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell. Environmental Technology (United Kingdom), 2020, 41, 2546-2553.	1.2	30
101	Removal of sodium dodecyl sulphate from wastewater and its effect on anodic biofilm and performance of microbial fuel cell. International Biodeterioration and Biodegradation, 2021, 156, 105108.	1.9	30
102	Novel application of peptaibiotics derived from Trichoderma sp. for methanogenic suppression and enhanced power generation in microbial fuel cells. RSC Advances, 2017, 7, 10707-10717.	1.7	29
103	In Situ Bioremediation Using Sediment Microbial Fuel Cell. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21, .	1.2	29
104	Improving Performance of Microbial Fuel Cell by Using Polyaniline-Coated Carbon–Felt Anode. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	29
105	Role of bioelectrochemical systems for the remediation of emerging contaminants from wastewater: A review. Journal of Basic Microbiology, 2022, 62, 201-222.	1.8	29
106	Application of Low-Cost Cu–Sn Bimetal Alloy as Oxygen Reduction Reaction Catalyst for Improving Performance of the Microbial Fuel Cell. MRS Advances, 2018, 3, 663-668.	0.5	28
107	Preparation of a fouling-resistant sustainable cathode for a single-chambered microbial fuel cell. Water Science and Technology, 2014, 69, 634-639.	1.2	27
108	Microbial fuel cell performance of graphitic carbon functionalized porous polysiloxane based ceramic membranes. Bioelectrochemistry, 2019, 129, 259-269.	2.4	27

#	Article	IF	CITATIONS
109	Chemically Stable Sulfonated Polytriazoles Containing Trifluoromethyl and Phosphine Oxide Moieties for Proton Exchange Membranes. ACS Applied Polymer Materials, 2020, 2, 2967-2979.	2.0	27
110	Utilisation of waste medicine wrappers as an efficient low-cost electrode material for microbial fuel cell. Environmental Technology (United Kingdom), 2020, 41, 1209-1218.	1.2	26
111	Application of synthesized porous graphitic carbon nitride and it's composite as excellent electrocatalysts in microbial fuel cell. International Journal of Hydrogen Energy, 2020, 45, 31056-31069.	3.8	26
112	Bacterial signalling mechanism: An innovative microbial intervention with multifaceted applications in microbial electrochemical technologies: A review. Bioresource Technology, 2022, 344, 126218.	4.8	26
113	Nitrogen and Sulfur Codoped Graphene Macroassemblies as High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Microbial Fuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 16591-16599.	3.2	25
114	Proficient Sanitary Wastewater Treatment in Laboratory and Field-Scale Microbial Fuel Cell with Anti-Biofouling Cu _{0.5} Mn _{0.5} Fe ₂ O ₄ as Cathode Catalyst. Journal of the Electrochemical Society, 2021, 168, 054519.	1.3	25
115	Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro―and microphytes. Journal of Basic Microbiology, 2022, 62, 260-278.	1.8	25
116	Effect of pH and distance between electrodes on the performance of a sediment microbial fuel cell. Water Science and Technology, 2013, 68, 537-543.	1.2	24
117	Improving performance of microbial fuel cell by enhanced bacterial-anode interaction using sludge immobilized beads with activated carbon. Chemical Engineering Research and Design, 2020, 143, 285-292.	2.7	24
118	Live diatoms as potential biocatalyst in a microbial fuel cell for harvesting continuous diafuel, carotenoids and bioelectricity. Chemosphere, 2022, 291, 132841.	4.2	24
119	Application of innovative electrochemical and microbial electrochemical technologies for the efficacious removal of emerging contaminants from wastewater: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108230.	3.3	24
120	Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. International Journal of Environmental Technology and Management, 2020, 23, 50.	0.1	23
121	Preparation of Pd–Ni Nanoparticles Supported on Activated Carbon for Efficient Removal of Basic Blue 3 from Water. Water (Switzerland), 2021, 13, 1211.	1.2	22
122	Performance improvement of sediment microbial fuel cell by enriching the sediment with cellulose: Kinetics of cellulose degradation. Environmental Technology and Innovation, 2019, 13, 189-196.	3.0	21
123	Metal organic frameworks as emergent oxygen-reducing cathode catalysts for microbial fuel cells: a review. International Journal of Environmental Science and Technology, 2022, 19, 11539-11560.	1.8	21
124	TiO2/Activated carbon photo cathode catalyst exposed to ultraviolet radiation to enhance the efficacy of integrated microbial fuel cell-membrane bioreactor. Bioresource Technology Reports, 2019, 7, 100303.	1.5	20
125	Optimization of saccharification of enzymatically pretreated sugarcane tops by response surface methodology for ethanol production. Biofuels, 2019, 10, 73-80.	1.4	20
126	Application of microbial electrochemical technologies for the treatment of petrochemical wastewater with concomitant valuable recovery: A review. Environmental Science and Pollution Research, 2022, 29, 61783-61802.	2.7	20

#	Article	IF	CITATIONS
127	Optimizing performance of a microbial carbon-capture cell using Box-Behnken design. Process Biochemistry, 2020, 95, 99-107.	1.8	20
128	Two-phase anaerobic digestion of food waste: Effect of semi-continuous feeding on acidogenesis and methane production. Bioresource Technology, 2022, 346, 126396.	4.8	20
129	Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst. Bioprocess and Biosystems Engineering, 2017, 40, 759-768.	1.7	19
130	A Systematic Review on Bioelectrochemical Systems Research. Current Pollution Reports, 2017, 3, 281-288.	3.1	19
131	Plant secondary metabolites induced electron flux in microbial fuel cell: investigation from laboratory-to-field scale. Scientific Reports, 2020, 10, 17185.	1.6	19
132	Surfactant removal from wastewater using photo-cathode microbial fuel cell and laterite-based hybrid treatment system. Bioprocess and Biosystems Engineering, 2020, 43, 2075-2084.	1.7	19
133	Methanogenesis inhibitors used in bio-electrochemical systems: A review revealing reality to decide future direction and applications. Bioresource Technology, 2021, 319, 124141.	4.8	19
134	Multi-chamber microbial desalination cell for improved organic matter and dissolved solids removal from wastewater. Water Science and Technology, 2014, 70, 1948-1954.	1.2	18
135	New crosslinked sulfonated polytriazoles: Proton exchange properties and microbial fuel cell performance. European Polymer Journal, 2018, 103, 322-334.	2.6	18
136	Tailoring hydrophilic and porous nature of polysiloxane derived ceramer and ceramic membranes for enhanced bioelectricity generation in microbial fuel cell. Ionics, 2019, 25, 5907-5918.	1.2	18
137	Electrocoagulation as an efficacious technology for the treatment of wastewater containing active pharmaceutical compounds: a review. Separation Science and Technology, 2022, 57, 1234-1256.	1.3	18
138	Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. Journal of the Air and Waste Management Association, 2022, 72, 147-160.	0.9	18
139	Graphene Oxide/Polytetrafluoroethylene Composite Anode and Chaetoceros pre-Treated Anodic Inoculum Enhancing Performance of Microbial Fuel Cell. Journal of Clean Energy Technologies, 2018, 6, 236-241.	0.1	18
140	Optimization of Operating Conditions for Maximizing Power Generation and Organic Matter Removal in Microbial Fuel Cell. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	17
141	Concomitant production of bioelectricity and hydrogen peroxide leading to the holistic treatment of wastewater in microbial fuel cell. Chemical Physics Letters, 2020, 759, 137986.	1.2	17
142	Effect of Using a Ceramic Separator on the Performance of Hydroponic Constructed Wetland-Microbial Fuel Cell. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	17
143	High throughput techniques for the rapid identification of electroactive microorganisms. Chemosphere, 2021, 285, 131489.	4.2	17
144	Electricity Production during Distillery Wastewater Treatment in a Microbial Fuel Cell Equipped with Low Cost PVA-Nafion-Borosilicate Membrane. Journal of Clean Energy Technologies, 2018, 6, 155-158.	0.1	17

#	Article	IF	CITATIONS
145	Simultaneous Removal of Phenol and Dissolved Solids from Wastewater Using Multichambered Microbial Desalination Cell. Applied Biochemistry and Biotechnology, 2015, 177, 1638-1653.	1.4	16
146	Application of silver-tin dioxide composite cathode catalyst for enhancing performance of microbial desalination cell. Materials Science for Energy Technologies, 2018, 1, 188-195.	1.0	16
147	Testing of Chemically Activated Cellulose Fibers as Adsorbents for Treatment of Arsenic Contaminated Water. Materials, 2021, 14, 3731.	1.3	16
148	Organic matter and nitrogen removal in a hybrid upflow anaerobic sludge blanket—Moving bed biofilm and rope bed biofilm reactor. Journal of Environmental Chemical Engineering, 2016, 4, 3240-3245.	3.3	15
149	Low efficiency of sewage treatment plants due to unskilled operations in India. Environmental Chemistry Letters, 2016, 14, 407-416.	8.3	15
150	Investigating the efficacy of CeO2 multi-layered triangular nanosheets for augmenting cathodic hydrogen peroxide production in microbial fuel cell. Electrochimica Acta, 2021, 398, 139341.	2.6	15
151	Maximum anode chamber volume and minimum anode area for supporting electrogenesis in microbial fuel cells treating wastewater. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	14
152	Enhanced Power Generation in Microbial Fuel Cell Using MnO2-Catalyzed Cathode Treating Fish Market Wastewater. Springer Proceedings in Energy, 2016, , 285-294.	0.2	14
153	Application of Low-Cost Transition Metal Based Co0.5Zn0.5Fe2O4 as Oxygen Reduction Reaction Catalyst for Improving Performance of Microbial Fuel Cell. MRS Advances, 2018, 3, 3171-3179.	0.5	14
154	The COVID-19 pandemic: biological evolution, treatment options and consequences. Innovative Infrastructure Solutions, 2020, 5, 1.	1.1	14
155	Preparation of Sulfonated Polytriazoles with a Phosphaphenanthrene Unit via Click Polymerization: Fabrication of Membranes and Properties Thereof. ACS Applied Polymer Materials, 2021, 3, 4127-4138.	2.0	14
156	Biodegradation kinetics of thin-stillage treatment by Aspergillus awamori and characterization of recovered chitosan. Applied Microbiology and Biotechnology, 2016, 100, 1955-1965.	1.7	13
157	Improved Performance of Microbial Fuel Cell by In Situ Methanogenesis Suppression While Treating Fish Market Wastewater. Applied Biochemistry and Biotechnology, 2020, 192, 1060-1075.	1.4	13
158	EFFECT OF SULFATE CONCENTRATION IN THE WASTEWATER ON MICROBIAL FUEL CELL PERFORMANCE. Environmental Engineering and Management Journal, 2010, 9, 1227-1234.	0.2	13
159	Waste-derived iron catalyzed bio-electro-Fenton process for the cathodic degradation of surfactants. Environmental Research, 2022, 212, 113141.	3.7	13
160	Trifluoromethyl and benzyl ether side groups containing novel sulfonated co-poly(ether imide)s: Application in microbial fuel cell. European Polymer Journal, 2019, 118, 451-464.	2.6	12
161	Proclaiming Electrochemical Oxidation as a Potent Technology for the Treatment of Wastewater Containing Xenobiotic Compounds: A Mini Review. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	12
162	Bioelectrogenesis Detection of Inoculums Using Electrochromic Tungsten Oxide and Performance Evaluation in Microbial Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F183-F189.	1.3	11

#	Article	IF	CITATIONS
163	Screening anodic inoculums for microbial fuel cells by quantifying bioelectrogenic activity using tungsten trioxide quantum rods. Bioresource Technology, 2018, 252, 66-71.	4.8	11
164	A BRIEF REVIEW ON RECENT ADVANCES IN AIR-CATHODE MICROBIAL FUEL CELLS. Environmental Engineering and Management Journal, 2018, 17, 1531-1544.	0.2	11
165	TiO2-Si- or SrTiO3-Si-impregnated PVA–based low-cost proton exchange membranes for application in microbial fuel cell. Ionics, 2020, 26, 6195-6205.	1.2	10
166	High-Density Polyethylene Waste-Derived Carbon as a Low-Cost Cathode Catalyst in Microbial Fuel Cell. International Journal of Environmental Research, 2021, 15, 1085-1096.	1.1	10
167	Application of ion exchange membranes in enhancing algal production alongside desalination of saline water in microbial fuel cell. MRS Advances, 2019, 4, 1077-1085.	0.5	9
168	Microbial Carbon Capture Cell: Advanced Bio-electrochemical System for Wastewater Treatment, Electricity Generation and Algal Biomass Production. , 2019, , 317-338.		9
169	Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation. Environmental Science and Pollution Research, 2022, 29, 51117-51129.	2.7	9
170	Anodic inoculum pre-treatment by extracts of Azadirachta indica leaves and Allium sativum peels for improved bioelectricity recovery from microbial fuel cell. International Journal of Hydrogen Energy, 2020, 45, 23391-23400.	3.8	8
171	A Sustainable Approach for the Production of Green Energy With the Holistic Treatment of Wastewater Through Microbial Electrochemical Technologies: A Review. Frontiers in Sustainability, 2021, 2, .	1.3	8
172	Enhancing performance of microbial fuel cell treating distillery wastewater using carbon supported Nickel-phthalocyanine/MnOx as novel cathode catalyst. MRS Advances, 2018, 3, 657-662.	0.5	7
173	Evaluating the suitability of tungsten, titanium and stainless steel wires as current collectors in microbial fuel cells. Water Science and Technology, 2018, 77, 999-1006.	1.2	7
174	A novel tin-chloride-zirconium oxide-kaolin composite coated carbon felt anode for electro-oxidation of surfactant from municipal wastewater. Journal of Environmental Chemical Engineering, 2020, 8, 104489.	3.3	7
175	Application of novel modular reactor for microbial electrosynthesis employing imposed potential with concomitant separation of acetic acid. Sustainable Energy Technologies and Assessments, 2021, 43, 100902.	1.7	7
176	Performance comparison between batch and continuous mode of operation of microbial electrosynthesis for the production of organic chemicals. Journal of Applied Electrochemistry, 2021, 51, 715-725.	1.5	7
177	Integration of bioelectrochemical systems with other existing wastewater treatment processes. , 2020, , 229-248.		7
178	Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. Environmental Science and Pollution Research, 2023, 30, 25427-25451.	2.7	7
179	Organic matter and dissolved salts removal in a microbial desalination cell with different orientation of ion exchange membranes. Desalination and Water Treatment, 0, , 1-9.	1.0	6
180	Integrating microbial electrochemical technologies for methane-to-bioelectricity and water-splitting to impart self-sustainability to wastewater treatment plants. Bioresource Technology Reports, 2021, 13, 100644.	1.5	6

#	Article	IF	CITATIONS
181	An integrated biorefinery approach for bioethanol production from sugarcane tops. Journal of Cleaner Production, 2022, 352, 131451.	4.6	6
182	Ultrafiltration membrane bioâ€fuel cell as an energyâ€efficient advanced wastewater treatment system. International Journal of Energy Research, 2022, 46, 20216-20227.	2.2	6
183	Sewage reuse for aquaculture after treatment in oxidation and duckweed pond. Water Science and Technology, 2007, 55, 173-181.	1.2	5
184	Comparative pretreatment method for efficient enzymatic hydrolysis of Salvinia cucullata and sewage treatment in ponds containing this biomass. Clean Technologies and Environmental Policy, 2014, 16, 1787-1794.	2.1	5
185	Biogas Production from Partially Digested Septic Tank Sludge and its Kinetics. Waste and Biomass Valorization, 2019, 10, 387.	1.8	5
186	Wastewater Treatment and Concomitant Bioelectricity Production Using Microbial Fuel Cell: Present Aspects, Up-Scaling and Future Inventiveness. , 2021, 6, 633-651.		5
187	Contaminant Removal and Energy Recovery in Microbial Fuel Cells. , 2019, , 76-94.		5
188	Biomass granulation in an upflow anaerobic sludge blanket reactor treating 500 m3/day low-strength sewage and post treatment in high-rate algal pond. Water Science and Technology, 2017, 76, 1234-1242.	1.2	4
189	Fouling resistant nitrogen doped carbon powder with amino-tri-methylene-phosphate cathode for microbial fuel cell. Materials for Renewable and Sustainable Energy, 2017, 6, 1.	1.5	4
190	Sludge granulation in an UASB–moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor. Environmental Technology (United Kingdom), 2018, 39, 298-307.	1.2	4
191	Low-Cost Solutions for Fabrication of Microbial Fuel Cells: Ceramic Separator and Electrode Modifications. , 2018, , 95-124.		4
192	In situ bioremediation techniques for the removal of emerging contaminants and heavy metals using hybrid microbial electrochemical technologies. , 2020, , 233-255.		4
193	Enhancing the Performance of Microbial Fuel Cell by Using Chloroform Pre-treated Mixed Anaerobic Sludge to Control Methanogenesis in Anodic Chamber. Applied Biochemistry and Biotechnology, 2021, 193, 846-855.	1.4	4
194	Bismuth-Impregnated Ruthenium with Activated Carbon as Photocathode Catalyst to Proliferate the Efficacy of a Microbial Fuel Cell. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	4
195	New Trends in Monitoring and Removing the Pollutants from Water. Journal of Chemistry, 2018, 2018, 1-2.	0.9	3
196	Concomitant bioenergy production and wastewater treatment employing microbial electrochemical technologies. , 2022, , 359-385.		3
197	Evaluating application of photosynthetic microbial fuel cell to exhibit efficient carbon sequestration with concomitant value-added product recovery from wastewater: A review. Environmental Science and Pollution Research, 2023, 30, 98995-99012.	2.7	3
198	Sediment Microbial Fuel Cell and Constructed Wetland Assisted with It: Challenges and Future Prospects. , 2018, , 335-352.		2

#	Article	IF	CITATIONS
199	Sulfonated coâ€poly(ether imide)s with alkyne groups: Fabrication of crosslinked membranes and studies on <scp>PEM</scp> properties including <scp>MFC</scp> performance. Polymer Engineering and Science, 2020, 60, 2097-2110.	1.5	2
200	Performance and Economics of Low Cost Clay Cylinder Microbial Fuel Cell for Wastewater Treatment. , 2011, , .		2
201	Yeast and Algae as Biocatalysts in Microbial Fuel Cell. , 2019, , 141-168.		2
202	Microbial fuel cells—Challenges for commercialization and how they can be addressed. , 2022, , 393-418.		2
203	Effect of Cathodic Electron Acceptors on the Performance of Microbial Desalination Cell. , 2019, , 305-315.		1
204	Microbial Electrochemical Technologies for CO2 Sequestration. , 2021, , 413-443.		1
205	Biological and Microbial Fuel Cells. , 2021, , .		1
206	Biofuel cell: existing formats, production level, constraints, and potential uses. , 2022, , 531-550.		1
207	An overview of membrane bioreactor coupled bioelectrochemical systems. , 2020, , 249-272.		1
208	Improved Wastewater Treatment by Using Integrated Microbial Fuel Cell-Membrane Bioreactor System Along with Ruthenium/activated Carbon Cathode Catalyst to Enhance Bio-energy Recovery. Water Science and Technology Library, 2021, , 183-192.	0.2	1
209	Optimum dose of Chaetoceros for controlling methanogenesis to improve power production of microbial fuel cell. Water Science and Technology, 2022, 85, 257-264.	1.2	1
210	Performance evaluation of microbial fuel cell using novel anode architecture and with low cost components. Journal of Environmental Engineering and Science, 0, , 1-8.	0.3	1
211	Bioelectrochemical Systems for Fuel Production: A Techno-Economic Analysis. , 2021, , 379-412.		0
212	Bioenergy and Valuables Recovery During Wastewater Treatment Using Bio-Electrochemical Systems. , 2021, , 259-259.		0
213	Integration of wastewater treatment with algal cultivation for the production of biofuel and bioenergy. , 2022, , 289-312.		0
214	Bioelectrochemical System for Bioremediation and Energy Generation. , 2020, , 365-391.		0
215	Microbial electrochemical technologies for wastewater treatment: insight into theory and reality. , 2022, , 179-200.		0
216	Development of Low-Cost Microbial Fuel Cell for Converting Waste to Electricity and Abating Pollution. , 2022, , 167-198.		0