
Anne Charmantier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2725793/publications.pdf Version: 2024-02-01

ANNE CHADMANTIED

#	Article	IF	CITATIONS
1	Epigenetics and the city: Nonâ€parallel DNA methylation modifications across pairs of urbanâ€forest Great tit populations. Evolutionary Applications, 2022, 15, 149-165.	3.1	15
2	Long-Term Decrease in Coloration: A Consequence of Climate Change?. American Naturalist, 2022, 200, 32-47.	2.1	6
3	Differences in the temporal scale of reproductive investment across the slowâ€fast continuum in a passerine. Ecology Letters, 2022, 25, 1139-1151.	6.4	4
4	Bird populations most exposed to climate change are less sensitive to climatic variation. Nature Communications, 2022, 13, 2112.	12.8	15
5	Are behaviour and stressâ€related phenotypes in urban birds adaptive?. Journal of Animal Ecology, 2022, 91, 1627-1641.	2.8	7
6	Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science, 2022, 376, 1012-1016.	12.6	69
7	Connecting the data landscape of longâ€ŧerm ecological studies: The SPIâ€Birds data hub. Journal of Animal Ecology, 2021, 90, 2147-2160.	2.8	25
8	An avian urban morphotype: how the city environment shapes great tit morphology at different life stages. Urban Ecosystems, 2021, 24, 929-941.	2.4	22
9	Bacterial microbiota similarity between predators and prey in a blue tit trophic network. ISME Journal, 2021, 15, 1098-1107.	9.8	16
10	Response to Kalchhauser et al.: Inherited Gene Regulation Is not Enough to Understand Nongenetic Inheritance. Trends in Ecology and Evolution, 2021, 36, 475-476.	8.7	6
11	Understanding the Social Dynamics of Breeding Phenology: Indirect Genetic Effects and Assortative Mating in a Long-Distance Migrant. American Naturalist, 2020, 196, 566-576.	2.1	15
12	Demographic history and genomics of local adaptation in blue tit populations. Evolutionary Applications, 2020, 13, 1145-1165.	3.1	11
13	Ageâ€dependent phenological plasticity in a wild bird. Journal of Animal Ecology, 2020, 89, 2733-2741.	2.8	14
14	Surface temperatures of non-incubated eggs in great tits (Parus major) are strongly associated with ambient temperature. International Journal of Biometeorology, 2020, 64, 1767-1775.	3.0	3
15	Fluctuating optimum and temporally variable selection on breeding date in birds and mammals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31969-31978.	7.1	69
16	Evolutionary Consequences of the Urban Heat Island. , 2020, , 91-110.		17
17	Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 2019, 10, 3109.	12.8	285
18	Science policies: How should science funding be allocated? An evolutionary biologists' perspective. Journal of Evolutionary Biology, 2019, 32, 754-768.	1.7	16

47

#	Article	IF	CITATIONS
19	Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180178.	4.0	165
20	On the importance of time scales when studying adaptive evolution. Evolution Letters, 2019, 3, 240-247.	3.3	13
21	The Missing Response to Selection in the Wild. Trends in Ecology and Evolution, 2018, 33, 337-346.	8.7	102
22	Current spring warming as a driver of selection on reproductive timing in a wild passerine. Journal of Animal Ecology, 2018, 87, 754-764.	2.8	35
23	Great tits and the city: Distribution of genomic diversity and gene–environment associations along an urbanization gradient. Evolutionary Applications, 2018, 11, 593-613.	3.1	42
24	Gene flow does not prevent personality and morphological differentiation between two blue tit populations. Journal of Evolutionary Biology, 2018, 31, 1127-1137.	1.7	10
25	Urban versus forest ecotypes are not explained by divergent reproductive selection. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180261.	2.6	31
26	Assortative mating by colored ornaments in blue tits: space and time matter. Ecology and Evolution, 2017, 7, 2069-2078.	1.9	25
27	Nest design in a changing world: Great tit Parus major nests from a Mediterranean city environment as a case study. Urban Ecosystems, 2017, 20, 1181-1190.	2.4	22
28	Multiple extreme climatic events strengthen selection for earlier breeding in a wild passerine. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160372.	4.0	49
29	Plasticity results in delayed breeding in a longâ€distant migrant seabird. Ecology and Evolution, 2017, 7, 3100-3109.	1.9	30
30	Disentangling drivers of reproductive performance in urban great tits: a food supplementation experiment. Journal of Experimental Biology, 2017, 220, 4195-4203.	1.7	15
31	Urbanization Is Associated with Divergence in Pace-of-Life in Great Tits. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	85
32	Urban Great Tits (Parus major) Show Higher Distress Calling and Pecking Rates than Rural Birds across Europe. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	34
33	Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits. Biological Journal of the Linnean Society, 2016, 118, 668-685.	1.6	17
34	Exploring Biotic and Abiotic Determinants of Nest Size in Mediterranean Great Tits (<i>Parus) Tj ETQq0 0 0 rgBT</i>	/Oyerlock	10 Jf 50 142
35	Environmental heterogeneity and population differences in blue tits personality traits. Behavioral Ecology, 2016, 28, arw148.	2.2	29

³⁶ Interspecific variation in the relationship between clutch size, laying date and intensity of urbanization in four species of holeâ€nesting birds. Ecology and Evolution, 2016, 6, 5907-5920. 1.9

#	Article	IF	CITATIONS
37	Mediterranean blue tits as a case study of local adaptation. Evolutionary Applications, 2016, 9, 135-152.	3.1	54
38	More daughters in a less favourable world: Breeding in intensively-managed orchards affects tertiary sex-ratio in the great tit. Basic and Applied Ecology, 2016, 17, 638-647.	2.7	9
39	Nest size is not closely related to breeding success in Blue Tits: A long-term nest-box study in a Mediterranean oak habitat. Auk, 2016, 133, 198-204.	1.4	16
40	Solutions for Archiving Data in Long-Term Studies: A Reply to Whitlock et al Trends in Ecology and Evolution, 2016, 31, 85-87.	8.7	10
41	Spatial autocorrelation in fitness affects the estimation of natural selection in the wild. Methods in Ecology and Evolution, 2015, 6, 1474-1483.	5.2	30
42	Quantitative Genetics of the Aging of Reproductive Traits in the Houbara Bustard. PLoS ONE, 2015, 10, e0133140.	2.5	8
43	Application of High Resolution Satellite Imagery to Characterize Individual-Based Environmental Heterogeneity in a Wild Blue Tit Population. Remote Sensing, 2015, 7, 13319-13336.	4.0	8
44	Archiving Primary Data: Solutions for Long-Term Studies. Trends in Ecology and Evolution, 2015, 30, 581-589.	8.7	98
45	Variation in clutch size in relation to nest size in birds. Ecology and Evolution, 2014, 4, 3583-3595.	1.9	49
46	Clutchâ€size variation in Western Palaearctic secondary holeâ€nesting passerine birds in relation to nest box design. Methods in Ecology and Evolution, 2014, 5, 353-362.	5.2	36
47	Tracing siteâ€specific isotopic signatures along a <scp>B</scp> lue <scp>T</scp> it <i><scp>C</scp>yanistes caeruleus</i> food chain. Ibis, 2014, 156, 165-175.	1.9	7
48	Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evolutionary Applications, 2014, 7, 15-28.	3.1	338
49	Assessing Multivariate Constraints to Evolution across Ten Long-Term Avian Studies. PLoS ONE, 2014, 9, e90444.	2.5	59
50	Is Non-genetic Inheritance Just a Proximate Mechanism? A Corroboration of the Extended Evolutionary Synthesis. Biological Theory, 2013, 7, 189-195.	1.5	63
51	Who wears the pants in a mute swan pair? Deciphering the effects of male and female age and identity on breeding success. Journal of Animal Ecology, 2013, 82, 826-835.	2.8	19
52	Canalization of phenology in common terns: genetic and phenotypic variations in spring arrival date. Behavioral Ecology, 2013, 24, 683-690.	2.2	23
53	Differences in boldness are repeatable and heritable in a longâ€ l ived marine predator. Ecology and Evolution, 2013, 3, 4291-4299.	1.9	58
54	Habitat-Linked Population Genetic Differentiation in the Blue Tit Cyanistes caeruleus. Journal of Heredity, 2012, 103, 781-791.	2.4	42

#	Article	IF	CITATIONS
55	Variation in phenotypic plasticity and selection patterns in blue tit breeding time: between―and withinâ€population comparisons. Journal of Animal Ecology, 2012, 81, 1041-1051.	2.8	85
56	Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature, 2012, 489, 554-557.	27.8	248
57	Frailty in state-space models: application to actuarial senescence in the Dipper. Ecology, 2011, 92, 562-567.	3.2	16
58	Life history of breeding partners alters ageâ€related changes of reproductive traits in a natural population of blue tits. Oikos, 2011, 120, 1129-1138.	2.7	27
59	Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics, 2011, 12, 475-486.	16.3	613
60	Individual variation in rates of senescence: natal origin effects and disposable soma in a wild bird population. Journal of Animal Ecology, 2010, 79, 1251-1261.	2.8	96
61	Age at the onset of senescence in birds and mammals is predicted by early-life performance. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2849-2856.	2.6	66
62	Passerine Extrapair Mating Dynamics: A Bayesian Modeling Approach Comparing Four Species. American Naturalist, 2010, 176, 178-187.	2.1	31
63	Local adaptation of timing of reproduction: females are in the driver's seat. Functional Ecology, 2009, 23, 172-179.	3.6	103
64	Seasonal changes in male and female bill knob size in the mute swan <i>Cygnus olor</i> . Journal of Avian Biology, 2009, 40, 511-519.	1.2	13
65	Senescence rates are determined by ranking on the fast–slow lifeâ€history continuum. Ecology Letters, 2008, 11, 664-673.	6.4	317
66	Outbreeding Alleviates Senescence in Hermaphroditic Snails as Expected from the Mutation-Accumulation Theory. Current Biology, 2008, 18, 906-910.	3.9	59
67	Adaptive Phenotypic Plasticity in Response to Climate Change in a Wild Bird Population. Science, 2008, 320, 800-803.	12.6	1,057
68	The Risk of Flawed Inference in Evolutionary Studies When Detectability Is Less than One. American Naturalist, 2008, 172, 441-448.	2.1	93
69	First evidence for heritable variation in cooperative breeding behaviour. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1757-1761.	2.6	48
70	Testing genetic models of mate choice evolution in the wild. Trends in Ecology and Evolution, 2006, 21, 417-419.	8.7	38
71	Extra-pair paternity in the strongly monogamous Wandering Albatross Diomedea exulans has no apparent benefits for females. Ibis, 2006, 149, 67-78.	1.9	36
72	Evolutionary Response to Selection on Clutch Size in a Longâ€Term Study of the Mute Swan. American Naturalist, 2006, 167, 453-465.	2.1	63

#	Article	IF	CITATIONS
73	A Thirty-Year Study of Phenotypic and Genetic Variation of Blue Tits in Mediterranean Habitat Mosaics. BioScience, 2006, 56, 661.	4.9	121
74	Age-dependent genetic variance in a life-history trait in the mute swan. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 225-232.	2.6	93
75	Quantitative genetics of age at reproduction in wild swans: Support for antagonistic pleiotropy models of senescence. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6587-6592.	7.1	148
76	How do misassigned paternities affect the estimation of heritability in the wild?. Molecular Ecology, 2005, 14, 2839-2850.	3.9	148
77	Environmental quality and evolutionary potential: lessons from wild populations. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1415-1425.	2.6	414
78	Do extra-pair paternities provide genetic benefits for female blue titsParus caeruleus?. Journal of Avian Biology, 2004, 35, 524-532.	1.2	69
79	PARASITISM REDUCES THE POTENTIAL FOR EVOLUTION IN A WILD BIRD POPULATION. Evolution; International Journal of Organic Evolution, 2004, 58, 203-206.	2.3	39
80	Habitat quality as a predictor of spatial variation in blue tit reproductive performance: a multi-plot analysis in a heterogeneous landscape. Oecologia, 2004, 141, 555-561.	2.0	98
81	Manipulation of nest-box density affects extra-pair paternity in a population of blue tits (Parus) Tj ETQq1 1 0.784	314.rgBT / 1.4	Overlock 10
82	A Contrast in Extra-Pair Paternity Levels on Mainland and Island Populations of Mediterranean Blue Tits. Ethology, 2003, 109, 351-363.	1.1	37
83	Two blue tit Parus caeruleus populations from Corsica differ in social dominance. Journal of Avian Biology, 2002, 33, 446-450.	1.2	25
84	Seasonal and landscape differencesin the foraging behaviour of the Rufous Treecreeper Climacteris rufa. Pacific Conservation Biology, 2001, 7, 9.	1.0	12