List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2725681/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Geometry and flow in ascending aortic aneurysms are influenced by left ventricular outflow tract<br>orientation: Detecting increased wall shear stress on the outer curve of proximal aortic aneurysms.<br>Journal of Thoracic and Cardiovascular Surgery, 2023, 166, 11-21.e1. | 0.4 | 6         |
| 2  | Learning a Model-Driven Variational Network for Deformable Image Registration. IEEE Transactions on Medical Imaging, 2022, 41, 199-212.                                                                                                                                         | 5.4 | 9         |
| 3  | Deep Learning of the Retina Enables Phenome- and Genome-Wide Analyses of the Microvasculature.<br>Circulation, 2022, 145, 134-150.                                                                                                                                              | 1.6 | 57        |
| 4  | Correspondence on "ACMG SF v3.0 list for reporting of secondary findings in clinical exome and<br>genome sequencing: a policy statement of the American College of Medical Genetics and Genomics<br>(ACMG)―byÂMiller etÂal. Genetics in Medicine, 2022, 24, 744-746.            | 1.1 | 17        |
| 5  | MulViMotion: Shape-Aware 3D Myocardial Motion Tracking From Multi-View Cardiac MRI. IEEE<br>Transactions on Medical Imaging, 2022, 41, 1961-1974.                                                                                                                               | 5.4 | 7         |
| 6  | Evaluation of Computational Methodologies for Accurate Prediction of Wall Shear Stress and<br>Turbulence Parameters in a Patient-Specific Aorta. Frontiers in Bioengineering and Biotechnology,<br>2022, 10, 836611.                                                            | 2.0 | 10        |
| 7  | Genetic and environmental determinants of diastolic heart function. , 2022, 1, 361-371.                                                                                                                                                                                         |     | 12        |
| 8  | PO-639-02 REPOLARISATION GRADIENTS DECREASE AFTER BARIATRIC SURGERY IN OBESE PATIENTS. Heart Rhythm, 2022, 19, S200.                                                                                                                                                            | 0.3 | 0         |
| 9  | Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data. Journal of the<br>American College of Cardiology, 2022, 79, 2219-2232.                                                                                                                             | 1.2 | 24        |
| 10 | Validation of Artificial Intelligence Cardiac MRI Measurements: Relationship to Heart Catheterization and Mortality Prediction. Radiology, 2022, 305, 68-79.                                                                                                                    | 3.6 | 12        |
| 11 | Disease-specific variant pathogenicity prediction significantly improves variant interpretation in inherited cardiac conditions. Genetics in Medicine, 2021, 23, 69-79.                                                                                                         | 1.1 | 39        |
| 12 | Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration. Lecture Notes in Computer Science, 2021, , 150-160.                                                                                                                                                        | 1.0 | 4         |
| 13 | Joint Motion Correction and Super Resolution for Cardiac Segmentation viaÂLatent Optimisation.<br>Lecture Notes in Computer Science, 2021, , 14-24.                                                                                                                             | 1.0 | 9         |
| 14 | Regional variation in cardiovascular magnetic resonance service delivery across the UK. Heart, 2021, 107, 1974-1979.                                                                                                                                                            | 1.2 | 21        |
| 15 | Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23. European Heart Journal, 2021, 42, 2000-2011.                                                                                   | 1.0 | 49        |
| 16 | Analysis of Turbulence Effects in a Patient-Specific Aorta with Aortic Valve Stenosis. Cardiovascular<br>Engineering and Technology, 2021, 12, 438-453.                                                                                                                         | 0.7 | 29        |
| 17 | The relationship between synaptic density marker SV2A, glutamate and N-acetyl aspartate levels in<br>healthy volunteers and schizophrenia: a multimodal PET and magnetic resonance spectroscopy brain<br>imaging study. Translational Psychiatry, 2021, 11, 393.                | 2.4 | 27        |
| 18 | Phenotypic Expression and Outcomes in Individuals With Rare Genetic Variants of Hypertrophic<br>Cardiomyopathy. Journal of the American College of Cardiology, 2021, 78, 1097-1110.                                                                                             | 1.2 | 55        |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nature Genetics, 2021, 53, 128-134.                                                  | 9.4  | 155       |
| 20 | Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies. Genetics in Medicine, 2021, 23, 856-864.                                             | 1.1  | 45        |
| 21 | One-stage Multi-task Detector for 3D Cardiac MR Imaging. , 2021, , .                                                                                                                                             |      | Ο         |
| 22 | Adipose tissue dysfunction, inflammation, and insulin resistance: alternative pathways to cardiac<br>remodelling in schizophrenia. A multimodal, case–control study. Translational Psychiatry, 2021, 11,<br>614. | 2.4  | 10        |
| 23 | Phase-contrast magnetic resonance imaging and computational fluid dynamics assessment of thoracic aorta blood flow: a literature review. European Journal of Cardio-thoracic Surgery, 2020, 57, 438-446.         | 0.6  | 5         |
| 24 | Putting machine learning into motion: applications in cardiovascular imaging. Clinical Radiology, 2020, 75, 33-37.                                                                                               | 0.5  | 17        |
| 25 | Explainable Anatomical Shape Analysis Through Deep Hierarchical Generative Models. IEEE<br>Transactions on Medical Imaging, 2020, 39, 2088-2099.                                                                 | 5.4  | 34        |
| 26 | The Egyptian Collaborative Cardiac Genomics (ECCO-GEN) Project: defining a healthy volunteer cohort. Npj Genomic Medicine, 2020, 5, 46.                                                                          | 1.7  | 5         |
| 27 | A population-based phenome-wide association study of cardiac and aortic structure and function.<br>Nature Medicine, 2020, 26, 1654-1662.                                                                         | 15.2 | 98        |
| 28 | Genetic and functional insights into the fractal structure of the heart. Nature, 2020, 584, 589-594.                                                                                                             | 13.7 | 86        |
| 29 | Artificial Intelligence for Cardiac Imaging-Genetics Research. Frontiers in Cardiovascular Medicine, 2020, 6, 195.                                                                                               | 1.1  | 16        |
| 30 | Paradoxical Higher Myocardial Wall Stress and Increased Cardiac Remodeling Despite Lower Mass in<br>Females. Journal of the American Heart Association, 2020, 9, e014781.                                        | 1.6  | 7         |
| 31 | Reevaluating the Genetic Contribution of Monogenic Dilated Cardiomyopathy. Circulation, 2020, 141, 387-398.                                                                                                      | 1.6  | 148       |
| 32 | Artificial intelligence and the cardiologist: what you need to know for 2020. Heart, 2020, 106, 399-400.                                                                                                         | 1.2  | 35        |
| 33 | Cardiac structure and function in schizophrenia: cardiac magnetic resonance imaging study. British<br>Journal of Psychiatry, 2020, 217, 450-457.                                                                 | 1.7  | 15        |
| 34 | Prognostic impact of right ventricular mass change in patients with idiopathic pulmonary arterial hypertension. International Journal of Cardiology, 2020, 304, 172-174.                                         | 0.8  | 5         |
| 35 | Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. European Radiology, 2019, 29, 232-240.                                               | 2.3  | 14        |
| 36 | Sex and regional differences in myocardial plasticity in aortic stenosis are revealed by 3D model machine learning. European Heart Journal Cardiovascular Imaging, 2019, 21, 417-427.                            | 0.5  | 7         |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | 3D High-Resolution Cardiac Segmentation Reconstruction From 2D Views Using Conditional Variational Autoencoders. , 2019, , .                                                                                          |     | 11        |
| 38 | Noninvasive Mapping of the Electrophysiological Substrate in Cardiac Amyloidosis and Its<br>Relationship to Structural Abnormalities. Journal of the American Heart Association, 2019, 8, e012097.                    | 1.6 | 21        |
| 39 | Sex-Dependent QRS Guidelines for Cardiac Resynchronization Therapy Using Computer Model Predictions. Biophysical Journal, 2019, 117, 2375-2381.                                                                       | 0.2 | 14        |
| 40 | Automatic 3D Bi-Ventricular Segmentation of Cardiac Images by a Shape-Refined Multi- Task Deep<br>Learning Approach. IEEE Transactions on Medical Imaging, 2019, 38, 2151-2164.                                       | 5.4 | 155       |
| 41 | Cardiac structure and function in patients with schizophrenia taking antipsychotic drugs: an MRI study. Translational Psychiatry, 2019, 9, 163.                                                                       | 2.4 | 34        |
| 42 | Genetic Variants Associated With Cancer Therapy–Induced Cardiomyopathy. Circulation, 2019, 140,<br>31-41.                                                                                                             | 1.6 | 195       |
| 43 | Deep-learning cardiac motion analysis for human survival prediction. Nature Machine Intelligence, 2019, 1, 95-104.                                                                                                    | 8.3 | 179       |
| 44 | Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: 3D<br>analysis of cardiac magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2019,<br>20, 668-676. | 0.5 | 13        |
| 45 | Identifying the optimal regional predictor of right ventricular global function: a highâ€resolution threeâ€dimensional cardiac magnetic resonance study. Anaesthesia, 2019, 74, 312-320.                              | 1.8 | 1         |
| 46 | Learning-Based Quality Control for Cardiac MR Images. IEEE Transactions on Medical Imaging, 2019, 38, 1127-1138.                                                                                                      | 5.4 | 42        |
| 47 | VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction. Lecture Notes in Computer Science, 2019, , 713-722.                                                                                   | 1.0 | 42        |
| 48 | Enhancing Magnetic Resonance Imaging With Computational Fluid Dynamics. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2, .                                                             | 0.3 | 6         |
| 49 | Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation. IEEE Transactions on Medical Imaging, 2018, 37, 384-395.                                                 | 5.4 | 493       |
| 50 | CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation. Genetics in Medicine, 2018, 20, 1246-1254.                                                            | 1.1 | 75        |
| 51 | Three-dimensional cardiovascular imaging-genetics: a mass univariate framework. Bioinformatics, 2018, 34, 97-103.                                                                                                     | 1.8 | 34        |
| 52 | 5â€Defining the effects of genetic variation using machine learning analysis of CMRS: a study in hypertrophic cardiomyopathy and in a healthy population. , 2018, , .                                                 |     | 0         |
| 53 | Combining Deep Learning and Shape Priors for Bi-Ventricular Segmentation of Volumetric Cardiac Magnetic Resonance Images. Lecture Notes in Computer Science, 2018, , 258-267.                                         | 1.0 | 3         |
| 54 | Genetic Etiology for Alcohol-Induced Cardiac Toxicity. Journal of the American College of Cardiology, 2018, 71, 2293-2302.                                                                                            | 1.2 | 182       |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Exercise cardiac MRI unmasks right ventricular dysfunction in acute hypoxia and chronic pulmonary<br>arterial hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315,<br>H950-H957. | 1.5 | 25        |
| 56 | Fractal Analysis of Right Ventricular Trabeculae in Pulmonary Hypertension. Radiology, 2018, 288,<br>386-395.                                                                                                           | 3.6 | 23        |
| 57 | Deep Nested Level Sets: Fully Automated Segmentation of Cardiac MR Images in Patients with Pulmonary Hypertension. Lecture Notes in Computer Science, 2018, , 595-603.                                                  | 1.0 | 17        |
| 58 | Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in<br>Pulmonary Hypertension: A Cardiac MR Imaging Study. Radiology, 2017, 283, 381-390.                                      | 3.6 | 161       |
| 59 | On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. Journal of Biomechanics, 2017, 60, 15-21.                                                  | 0.9 | 116       |
| 60 | Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Science Translational Medicine, 2017, 9, .                                                    | 5.8 | 206       |
| 61 | Titin-truncating variants affect heart function in disease cohorts and the general population. Nature<br>Genetics, 2017, 49, 46-53.                                                                                     | 9.4 | 255       |
| 62 | Stratified Decision Forests for Accurate Anatomical Landmark Localization in Cardiac Images. IEEE<br>Transactions on Medical Imaging, 2017, 36, 332-342.                                                                | 5.4 | 56        |
| 63 | Abnormal brain white matter microstructure is associated with both pre-hypertension and hypertension. PLoS ONE, 2017, 12, e0187600.                                                                                     | 1.1 | 47        |
| 64 | Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy.<br>PLoS ONE, 2017, 12, e0172995.                                                                                    | 1.1 | 92        |
| 65 | The Authors Reply:. JACC: Cardiovascular Imaging, 2016, 9, 763-764.                                                                                                                                                     | 2.3 | 0         |
| 66 | Pulmonary Artery Stiffness Is Independently Associated with Right Ventricular Mass and Function: A<br>Cardiac MR Imaging Study. Radiology, 2016, 280, 398-404.                                                          | 3.6 | 17        |
| 67 | Stiff Arteries, Stiff Ventricles. Circulation: Cardiovascular Imaging, 2016, 9, .                                                                                                                                       | 1.3 | 2         |
| 68 | Relationship between body composition and left ventricular geometry using three dimensional cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 32.                              | 1.6 | 23        |
| 69 | Moderate Physical Activity in Healthy Adults Is Associated With Cardiac Remodeling. Circulation:<br>Cardiovascular Imaging, 2016, 9, .                                                                                  | 1.3 | 40        |
| 70 | Use of artificial intelligence to predict survival in pulmonary hypertension. Lancet, The, 2016, 387, S35.                                                                                                              | 6.3 | 1         |
| 71 | The safe practice of CT coronary angiography in adult patients in UK imaging departments. Clinical Radiology, 2016, 71, 722-728.                                                                                        | 0.5 | 19        |
| 72 | Acute myocardial infarction: susceptibility-weighted cardiac MRI for the detection ofÂreperfusion haemorrhage at 1.5 T. Clinical Radiology, 2016, 71, e150-e156.                                                        | 0.5 | 3         |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Development of integrated high-resolution three-dimensional MRI and computational modelling<br>techniques to identify novel genetic and anthropometric determinants of cardiac form and function.<br>Lancet, The, 2016, 387, S36.                     | 6.3 | 1         |
| 74 | Assessment of Hemodynamic Conditions in the Aorta Following Root Replacement with Composite Valve-Conduit Graft. Annals of Biomedical Engineering, 2016, 44, 1392-1404.                                                                               | 1.3 | 17        |
| 75 | Assessing exercise cardiac reserve using real-time cardiovascular magnetic resonance. Journal of<br>Cardiovascular Magnetic Resonance, 2016, 19, 7.                                                                                                   | 1.6 | 35        |
| 76 | Fractal analysis of left ventricular trabeculations is associated with impaired myocardial deformation in healthy Chinese. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 102.                                                               | 1.6 | 43        |
| 77 | A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an<br>analysis of shape and motion. Medical Image Analysis, 2015, 26, 133-145.                                                                      | 7.0 | 119       |
| 78 | 175â€Aortopathy-causing mutations increase aortic stiffness in healthy individuals. Heart, 2015, 101, A99.1-A99.                                                                                                                                      | 1.2 | 1         |
| 79 | Precursors of Hypertensive Heart Phenotype Develop in Healthy Adults. JACC: Cardiovascular Imaging, 2015, 8, 1260-1269.                                                                                                                               | 2.3 | 40        |
| 80 | Left Main Bronchus Compression Due to Main Pulmonary Artery Dilatation in Pulmonary<br>Hypertension: Two Case Reports. Pulmonary Circulation, 2015, 5, 723-725.                                                                                       | 0.8 | 8         |
| 81 | <i>ZBTB17</i> ( <i>MIZ1</i> ) Is Important for the Cardiac Stress Response and a Novel Candidate Gene<br>for Cardiomyopathy and Heart Failure. Circulation: Cardiovascular Genetics, 2015, 8, 643-652.                                                | 5.1 | 12        |
| 82 | Adverse changes in left ventricular structure begin at normotensive systolic blood pressures: a high<br>resolution MRI study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, M11.                                                            | 1.6 | 0         |
| 83 | Three dimensional modelling of the effect of arterial pulse wave velocity and body size on left ventricular geometry. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O44.                                                                    | 1.6 | 0         |
| 84 | Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Science Translational Medicine, 2015, 7, 270ra6.                                                                      | 5.8 | 375       |
| 85 | In-vivo assessment of the morphology and hemodynamic functions of the BioValsalvaâ,,¢ composite valve-conduit graft using cardiac magnetic resonance imaging and computational modelling technology. Journal of Cardiothoracic Surgery, 2014, 9, 193. | 0.4 | 9         |
| 86 | Population-based studies of myocardial hypertrophy: high resolution cardiovascular magnetic<br>resonance atlases improve statistical power. Journal of Cardiovascular Magnetic Resonance, 2014, 16,<br>16.                                            | 1.6 | 42        |
| 87 | Multi-atlas Spectral PatchMatch: Application to Cardiac Image Segmentation. Lecture Notes in Computer Science, 2014, 17, 348-355.                                                                                                                     | 1.0 | 7         |
| 88 | A Probabilistic Patch-Based Label Fusion Model for Multi-Atlas Segmentation With Registration<br>Refinement: Application to Cardiac MR Images. IEEE Transactions on Medical Imaging, 2013, 32, 1302-1315.                                             | 5.4 | 174       |
| 89 | Impact of number of channels on RF shimming at 3T. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2013, 26, 401-410.                                                                                                                 | 1.1 | 41        |
| 90 | Salvage assessment with cardiac MRI following acute myocardial infarction underestimates potential for recovery of systolic strain. European Radiology, 2013, 23, 1210-1217.                                                                          | 2.3 | 11        |

| #   | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | MRIdb: Medical Image Management for Biobank Research. Journal of Digital Imaging, 2013, 26, 886-890.                                                                                                                                                                   | 1.6 | 24        |
| 92  | Temporal sparse free-form deformations. Medical Image Analysis, 2013, 17, 779-789.                                                                                                                                                                                     | 7.0 | 50        |
| 93  | Investigating stable chest pain of suspected cardiac origin. BMJ, The, 2013, 347, f3940-f3940.                                                                                                                                                                         | 3.0 | 2         |
| 94  | Cardiac Image Super-Resolution with Global Correspondence Using Multi-Atlas PatchMatch. Lecture Notes in Computer Science, 2013, 16, 9-16.                                                                                                                             | 1.0 | 150       |
| 95  | Body Fat Is Associated With Reduced Aortic Stiffness Until Middle Age. Hypertension, 2013, 61, 1322-1327.                                                                                                                                                              | 1.3 | 80        |
| 96  | Remodeling after acute myocardial infarction: mapping ventricular dilatation using three dimensional CMR image registration. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 46.                                                                               | 1.6 | 24        |
| 97  | Evolution and Current Applications of the Cabrol Procedure and Its Modifications. Annals of Thoracic Surgery, 2011, 91, 1636-1641.                                                                                                                                     | 0.7 | 43        |
| 98  | Myocarditis or myocardial infarction? MRI can help. Heart, 2011, 97, 1283-1283.                                                                                                                                                                                        | 1.2 | 3         |
| 99  | Snapshot Inversion Recovery: An Optimized Single-Shot T1-weighted Inversion-Recovery Sequence for Improved Fetal Brain Anatomic Delineation. Radiology, 2011, 258, 229-235.                                                                                            | 3.6 | 21        |
| 100 | Subject-specific water-selective imaging using parallel transmission. Magnetic Resonance in Medicine, 2010, 63, 988-997.                                                                                                                                               | 1.9 | 16        |
| 101 | So you want to be… a radiologist. British Journal of Hospital Medicine (London, England: 2005), 2010,<br>71, M176-M176.                                                                                                                                                | 0.2 | Ο         |
| 102 | Assessment of severe reperfusion injury with T2* cardiac MRI in patients with acute myocardial infarction. Heart, 2010, 96, 1885-1891.                                                                                                                                 | 1.2 | 68        |
| 103 | Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional<br>echocardiography: comparison with cardiac magnetic resonance imaging. European Journal of<br>Echocardiography, 2010, 11, 64-73.                                             | 2.3 | 107       |
| 104 | Reperfusion Hemorrhage Following Acute Myocardial Infarction: Assessment with T2* Mapping and Effect on Measuring the Area at Risk. Radiology, 2009, 250, 916-922.                                                                                                     | 3.6 | 97        |
| 105 | Cardiac MRI of myocardial salvage at the peri-infarct border zones after primary coronary<br>intervention. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H340-H346.                                                                    | 1.5 | 42        |
| 106 | Cardiac T2* and lipid measurement at 3.0 T-initial experience. European Radiology, 2008, 18, 800-805.                                                                                                                                                                  | 2.3 | 19        |
| 107 | Quantitative 3T MR Imaging of the Descending Thoracic Aorta: Patients with Familial<br>Hypercholesterolemia Have an Increased Aortic Plaque Burden Despite Long-Term Lipid-lowering<br>Therapy. Journal of Vascular and Interventional Radiology, 2008, 19, 1403-1408. | 0.2 | 13        |
| 108 | Liver Fat Content and T2*: Simultaneous Measurement by Using Breath-hold Multiecho MR Imaging at<br>3.0 T—Feasibility. Radiology, 2008, 247, 550-557.                                                                                                                  | 3.6 | 114       |

| #   | Article                                                                                                                                                                            | IF               | CITATIONS                    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|
| 109 | Three-Tesla Cardiac Magnetic Resonance Imaging for Preterm Infants. Pediatrics, 2007, 120, 78-83.                                                                                  | 1.0              | 55                           |
| 110 | Myocardial infarction in sickle-cell disease. Lancet, The, 2007, 369, 246.                                                                                                         | 6.3              | 27                           |
| 111 | MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia. Neuroradiology, 2007, 49, 927-931.     | 1.1              | 4                            |
| 112 | Magnetic resonance direct thrombus imaging at 3T field strength in patients with lower limb deep vein thrombosis: a feasibility study. Clinical Radiology, 2006, 61, 282-286.      | 0.5              | 9                            |
| 113 | Establishing a clinical cardiac MRI service. Clinical Radiology, 2006, 61, 211-224.                                                                                                | 0.5              | 8                            |
| 114 | Interpretation of wrist and hand radiographs. British Journal of Hospital Medicine (London, England:) Tj ETQq0 0                                                                   | 0 rgBT /0\       | verlock 10 Tf                |
| 115 | Interpretation of cervical spine radiographs. British Journal of Hospital Medicine (London, England:) Tj ETQq1 1 0                                                                 | .784314 r<br>0.2 | gBT /Overlo <mark>c</mark> i |
| 116 | So you want to be … a radiologist. British Journal of Hospital Medicine (London, England: 2005), 2006,<br>67, M19-M19.                                                             | 0.2              | 0                            |
| 117 | Imaging of the pancreas. British Journal of Hospital Medicine (London, England: 2005), 2006, 67, 8-13.                                                                             | 0.2              | 0                            |
| 118 | x-f choice: Reconstruction of undersampled dynamic MRI by data-driven alias rejection applied to contrast-enhanced angiography. Magnetic Resonance in Medicine, 2006, 56, 811-823. | 1.9              | 19                           |
| 119 | Interpretation of the shoulder radiograph. British Journal of Hospital Medicine (London, England:) Tj ETQq1 1 0.7                                                                  | 84314 rgE        | 3T /Overlock                 |
| 120 | Interpretation of ankle and foot radiographs. British Journal of Hospital Medicine (London, England:) Tj ETQq0 0                                                                   | O rgBT ∕Ov       | verlock 10 Tf S              |
| 121 | Interpretation of paediatric trauma. British Journal of Hospital Medicine (London, England: 2005),<br>2006, 67, M134-M137.                                                         | 0.2              | 0                            |
| 122 | Interpretation of thoracolumbar spine radiographs. British Journal of Hospital Medicine (London,) Tj ETQq0 0 0 rg                                                                  | gBT/Qverlo       | ock 10 Tf 50 :               |
| 123 | Interpretation of pelvis and hip radiographs. British Journal of Hospital Medicine (London, England:) Tj ETQq1 1 0                                                                 | .784314 r<br>0.2 | gBT /Overloc                 |
| 124 | Interpretation of knee radiographs. British Journal of Hospital Medicine (London, England: 2005),<br>2006, 67, M150-M152.                                                          | 0.2              | 0                            |
| 125 | Interpretation of elbow and forearm radiographs. British Journal of Hospital Medicine (London,) Tj ETQq1 1 0.784                                                                   | 1314 rgBT<br>0.2 | /Overlock 10                 |
| 126 | Interpretation of the chest radiograph in the casualty department. British Journal of Hospital<br>Medicine (London, England: 2005), 2005, 66, M8-M13.                              | 0.2              | 0                            |

DECLAN P O'REGAN

| #   | Article                                                                                                              | IF              | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 127 | Interpretation of skull and facial radiographs. British Journal of Hospital Medicine (London, England:) Tj ETQq1 1 ( | ).784314<br>0.2 | rgBT /Overlo  |
| 128 | Imaging of the jaundiced patient. British Journal of Hospital Medicine (London, England: 2005), 2005,<br>66, 17-22.  | 0.2             | 6             |
| 129 | Ultrasonography of the Shoulder. Ultrasound, 2005, 13, 48-53.                                                        | 0.3             | 0             |
| 130 | A comparison of MR cholangiopancreatography at 1.5 and 3.0 Tesla. British Journal of Radiology, 2005, 78, 894-898.   | 1.0             | 36            |
| 131 | Interpretation of the abdominal radiograph: 1. British Journal of Hospital Medicine (London, England:) Tj ETQq1 1    | 0.784314        | 4 rgBT /Over  |
| 132 | Interpretation of the abdominal radiograph: 2. British Journal of Hospital Medicine (London, England:) Tj ETQq0 0    | 0 rgBT /C       | overlock 10 T |
| 133 | Respiratory Motion Correction for 2D Cine Cardiac MR Images using Probabilistic Edge Maps. , 0, , .                  |                 | 2             |