
Sergio Castillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2725536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. Journal of the American Chemical Society, 2004, 126, 1592-1593.	13.7	288
2	Highlights of Transition Metal atalyzed Asymmetric Hydrogenation of Imines. ChemCatChem, 2010, 2, 1346-1371.	3.7	251
3	Synthesis of 2-substituted-benzothiazoles by palladium-catalyzed intramolecular cyclization of o-bromophenylthioureas and o-bromophenylthioamides. Tetrahedron Letters, 2003, 44, 6073-6077.	1.4	172
4	Carbohydrate derivative ligands in asymmetric catalysis. Coordination Chemistry Reviews, 2004, 248, 2165-2192.	18.8	170
5	Chiral Diphosphites Derived fromD-Glucose: New Ligands for the Asymmetric Catalytic Hydroformylation of Vinyl Arenes. Chemistry - A European Journal, 2001, 7, 3086-3094.	3.3	127
6	Regioselective hydroformylation of cyclic vinyl and allyl ethers with rhodium catalysts. Crucial influence of the size of the phosphorus cocatalyst. Organometallics, 1992, 11, 3525-3533.	2.3	122
7	Soluble transition-metal nanoparticles-catalysed hydrogenation of arenes. Dalton Transactions, 2010, 39, 11499.	3.3	118
8	C1 and C2-symmetric carbohydrate phosphorus ligands in asymmetric catalysis. Chemical Society Reviews, 2005, 34, 702.	38.1	115
9	Diphosphine and Dithiolate Rhodium Complexes:  Characterization of the Species under Hydroformylation Conditions. Organometallics, 1998, 17, 2543-2552.	2.3	97
10	Advances in the enantioselective synthesis of carbocyclic nucleosides. Chemical Society Reviews, 2013, 42, 5056.	38.1	95
11	Highlights of the Rh-catalysed asymmetric hydroformylation of alkenes using phosphorus donor ligands. Tetrahedron: Asymmetry, 2010, 21, 1135-1146.	1.8	91
12	Colloidal Ru, Co and Fe-nanoparticles. Synthesis and application as nanocatalysts in the Fischer–Tropsch process. Catalysis Today, 2012, 183, 154-171.	4.4	90
13	Chemo-, Regio-, and Stereoselective Silver-Catalyzed Aziridination of Dienes: Scope, Mechanistic Studies, and Ring-Opening Reactions. Journal of the American Chemical Society, 2014, 136, 5342-5350.	13.7	89
14	Efficient Silver atalyzed Regio―and Stereospecific Aziridination of Dienes. Angewandte Chemie - International Edition, 2010, 49, 7092-7095.	13.8	86
15	Insights into CO/Styrene Copolymerization by Using PdII Catalysts Containing Modular Pyridine–Imidazoline Ligands. Chemistry - A European Journal, 2004, 10, 3747-3760.	3.3	83
16	Phosphine Ligands in the Palladium atalysed Methoxycarbonylation of Ethene: Insights into the Catalytic Cycle through an HPâ€NMR Spectroscopic Study. Chemistry - A European Journal, 2010, 16, 6919-6932.	3.3	74
17	An efficient method for the synthesis of enantiopure phosphine–imidazoline ligands: application to the Ir-catalyzed hydrogenation of imines. Tetrahedron: Asymmetry, 2004, 15, 3365-3373.	1.8	69
18	Palladium Catalytic Species Containing Chiral Phosphites: Towards a Discrimination between Molecular and Colloidal Catalysts. Advanced Synthesis and Catalysis, 2007, 349, 2459-2469.	4.3	68

#	Article	IF	CITATIONS
19	Diphosphite ligands derived from carbohydrates as stabilizers for ruthenium nanoparticles: promising catalytic systems in arene hydrogenation. Chemical Communications, 2008, , 2759.	4.1	65
20	An Efficient and General Enantioselective Synthesis of Sphingosine, Phythosphingosine, and 4-Substituted Derivatives. Organic Letters, 2009, 11, 205-208.	4.6	64
21	Phosphine-Free Suzuki–Miyaura Cross-Coupling in Aqueous Media Enables Access to 2- <i>C</i> -Aryl-Glycosides. Organic Letters, 2012, 14, 1728-1731.	4.6	61
22	Iridium-Catalyzed Enantioselective Hydrogenation of Imines with Xylose Diphosphite and Diphosphinite Ligands. Advanced Synthesis and Catalysis, 2003, 345, 169-171.	4.3	60
23	Novel diphosphite derived from d-gluco-furanose provides high regio- and enantioselectivity in Rh-catalysed hydroformylation of vinyl arenes. Chemical Communications, 2000, , 1607-1608.	4.1	59
24	Heterogenization of Pd–NHC complexes onto a silica support and their application in Suzuki–Miyaura coupling under batch and continuous flow conditions. Catalysis Science and Technology, 2015, 5, 310-319.	4.1	58
25	Synthesis of 2'-Cbetafluorodaunomycin. An example of configurational retention in fluorodehydroxylation with diethylaminosulfur trifluoride. Journal of Organic Chemistry, 1985, 50, 4913-4917.	3.2	57
26	Recent advances in the glycosylation of sphingosines and ceramides. Carbohydrate Research, 2007, 342, 1595-1612.	2.3	57
27	Chiral Diphosphiteâ€Modified Rhodium(0) Nanoparticles: Catalyst Reservoir for Styrene Hydroformylation. European Journal of Inorganic Chemistry, 2008, 2008, 3460-3466.	2.0	54
28	Synthesis of <scp>d</scp> - and <scp>l</scp> -Carbocyclic Nucleosides via Rhodium-Catalyzed Asymmetric Hydroacylation as the Key Step. Organic Letters, 2008, 10, 4735-4738.	4.6	54
29	Carbohydrateâ€Derived 1,3â€Diphosphite Ligands as Chiral Nanoparticle Stabilizers: Promising Catalytic Systems for Asymmetric Hydrogenation. ChemSusChem, 2009, 2, 769-779.	6.8	54
30	A new and efficient catalytic method for synthesizing isocyanates from carbamates. Tetrahedron Letters, 2002, 43, 1673-1676.	1.4	51
31	Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. Journal of the American Chemical Society, 2019, 141, 4063-4072.	13.7	51
32	Highly Efficient Rhodium Catalysts for the Asymmetric Hydroformylation of Vinyl and Allyl Ethers using <i>C</i> ₁ ‣ymmetrical Diphosphite Ligands. Advanced Synthesis and Catalysis, 2010, 352, 463-477.	4.3	49
33	Iridium Complexes of Orthometalated Triaryl Phosphites:  Synthesis, Structure, Reactivity, and Use as Imine Hydrogenation Catalysts. Organometallics, 1996, 15, 3990-3997.	2.3	48
34	Asymmetric Hydroformylation. , 2006, , 35-64.		48
35	NHC-stabilised Rh nanoparticles: Surface study and application in the catalytic hydrogenation of aromatic substrates. Journal of Catalysis, 2017, 354, 113-127.	6.2	48
36	Recent Advances in the Synthesis of Sphingosine and Phytosphingosine, Molecules of Biological Significance. Current Organic Chemistry, 2010, 14, 2483-2521.	1.6	47

#	Article	IF	CITATIONS
37	A phosphine-free Pd catalyst for the selective double carbonylation of aryl iodides. Chemical Communications, 2012, 48, 1695-1697.	4.1	46
38	Asymmetric hydroformylation of styrene using a rhodium catalyst with BDPP as the chiral ligand. Tetrahedron: Asymmetry, 1996, 7, 1829-1834.	1.8	45
39	New Pyridineâ [~] Imidazoline Ligands for Palladium-Catalyzed Copolymerization of Carbon Monoxide and Styrene. European Journal of Inorganic Chemistry, 2001, 2001, 3009-3011.	2.0	45
40	gem-Difluorination versus 1,2-migration and fragmentation in the reaction of 2- and 3-uloses with DAST. Influence of stereochemistry at the anomeric carbon atom. Journal of Organic Chemistry, 1991, 56, 4556-4559.	3.2	44
41	Stereoselective Synthesis of 2â€~,3â€~-Dideoxynucleosides by Addition of Selenium Electrophiles to Glycals. A Formal Synthesis of D4T from 2-Deoxyribose. Journal of Organic Chemistry, 1997, 62, 1501-1505.	3.2	44
42	Tuning the Selectivity in the Hydrogenation of Aromatic Ketones Catalyzed by Similar Ruthenium and Rhodium Nanoparticles. ChemCatChem, 2014, 6, 3160-3168.	3.7	42
43	Enhanced regioselectivity in palladium-catalysed asymmetric methoxycarbonylation of styrene using phosphetanes as chiral ligands. Inorganic Chemistry Communication, 2005, 8, 1113-1115.	3.9	41
44	Rhodium-diphosphite catalysed hydroformylation of allylbenzene and propenylbenzene derivatives. Inorganica Chimica Acta, 2006, 359, 2973-2979.	2.4	40
45	Synthesis of acetals from alkenes by one-pot hydroformylation-transacetalization reactions catalysed by rhodium complexes and pyridinium p-toluenesulphonate. Tetrahedron Letters, 1994, 35, 2361-2364.	1.4	38
46	Synthesis of Purine and Pyrimidine Isodideoxynucleosides from (S)-Glycydol Using Iodoetherification as Key Step. Synthesis of (S,S)-iso-ddA1. Journal of Organic Chemistry, 1999, 64, 6508-6511.	3.2	38
47	Conformationally-Locked <i>N</i> -Glycosides with Selective β-Glucosidase Inhibitory Activity: Identification of a New Non-Iminosugar-Type Pharmacological Chaperone for Gaucher Disease. Journal of Medicinal Chemistry, 2012, 55, 6857-6865.	6.4	36
48	Asymmetric sulfur ylide based enantioselective synthesis of D-erythro-sphingosine. Organic and Biomolecular Chemistry, 2008, 6, 4502.	2.8	35
49	Asymmetric hydroformylation of styrene by rhodium(I) catalysts with chiral ligands containing sulfur donors. Journal of the Chemical Society Chemical Communications, 1993, , 1833-1834.	2.0	34
50	New dithiolate-bridged rhodium complexes. Journal of the Chemical Society Dalton Transactions, 1993, , 2689-2696.	1.1	34
51	Enantioselective Synthesis of Jaspine B (Pachastrissamine) and Its Câ€2 and/or Câ€3 Epimers. European Journal of Organic Chemistry, 2011, 2011, 1514-1519.	2.4	34
52	Fischer–Tropsch synthesis catalysed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction. Applied Catalysis A: General, 2016, 513, 39-46.	4.3	34
53	Selenium-controlled stereoselective synthesis of 2′-deoxynucleosides from glycals. A formal synthesis of AZT. Tetrahedron Letters, 1993, 34, 2821-2822.	1.4	33
54	Synthesis of 2-deoxy-3,5-di-O-benzoyl-2,2-difluoro-D-ribose from D-glucose and D-mannose. A formal synthesis of gemcitabine. Tetrahedron, 1998, 54, 3523-3532.	1.9	33

#	Article	IF	CITATIONS
55	<i>C</i> ₁ â€Symmetric Diphosphite Ligands Derived from Carbohydrates: Influence of Structural Modifications on the Rhodiumâ€Catalyzed Asymmetric Hydroformylation of Styrene. European Journal of Organic Chemistry, 2009, 2009, 1191-1201.	2.4	33
56	Efficient procedure for the synthesis of erythro and threo furanoid glycals from 2-deoxyribose. Tetrahedron Letters, 1994, 35, 5513-5516.	1.4	32
57	Tridentate chiral NPN ligands based on bis(oxazolines) and their use in Pd-catalyzed enantioselective allylic substitution in molecular and ionic liquids. Tetrahedron, 2011, 67, 5402-5408.	1.9	32
58	C2-Symmetric Diphosphinite Ligands Derived from Carbohydrates. The Strong Influence of Remote Stereocenters on Asymmetric Rhodium-Catalyzed Hydrogenation. Journal of Organic Chemistry, 2004, 69, 7502-7510.	3.2	31
59	Stereoselective Synthesis of 2-Deoxy-2-iodo-glycosides from Furanoses. A New Route to 2-Deoxy-glycosides and 2-Deoxy-oligosaccharides ofriboandxyloConfiguration. Journal of Organic Chemistry, 2005, 70, 10297-10310.	3.2	31
60	Synthesis of 2-Iodoglycals, Glycals, and 1,1â€~-Disaccharides from 2-Deoxy-2-iodopyranoses under Dehydrative Glycosylation Conditions. Journal of Organic Chemistry, 2007, 72, 8998-9001.	3.2	31
61	Rhodium-catalyzed regio- and stereoselective oxyamination of dienes via tandem aziridination/ring-opening of dienyl carbamates. Chemical Communications, 2014, 50, 7344-7347.	4.1	31
62	Selective catalytic hydrogenation of polycyclic aromatic hydrocarbons promoted by ruthenium nanoparticles. Catalysis Science and Technology, 2015, 5, 2741-2751.	4.1	31
63	NewC2- andC1-Symmetric Phosphorus Ligands Based on Carbohydrate Scaffolds and Their Use in the Iridium-Catalysed Hydrogenation of Ketimines. European Journal of Organic Chemistry, 2006, 2006, 627-633.	2.4	30
64	An outstanding palladium system containing a C2-symmetrical phosphite ligand for enantioselective allylic substitution processes. Chemical Communications, 2008, , 6197.	4.1	30
65	Modular Synthesis of Functionalisable Alkoxyâ€Tethered Nâ€Heterocyclic Carbene Ligands and an Active Catalyst for Buchwald–Hartwig Aminations. Advanced Synthesis and Catalysis, 2014, 356, 460-474.	4.3	30
66	Trifluoromethylation of Electron-Rich Alkenyl Iodides with Fluoroform-Derived "Ligandless― CuCF ₃ . Journal of Organic Chemistry, 2018, 83, 8150-8160.	3.2	30
67	General Method for Synthesizing Pyranoid Glycals.A New Route to Allal and Gulal Derivatives. Organic Letters, 2006, 8, 673-675.	4.6	29
68	New alkyl derivatives phosphine sulfonate (P–O) ligands. Catalytic activity in Pd-catalysed Suzuki–Miyaura reactions in water. Dalton Transactions, 2007, , 2859-2861.	3.3	29
69	New <i>C</i> ₂ ‣ymmetric Diphosphite Ligands Derived from Carbohydrates: Effect of the Remote Stereocenters on Asymmetric Catalysis. Advanced Synthesis and Catalysis, 2007, 349, 1983-1998.	4.3	29
70	"Ligandless―Pentafluoroethylation of Unactivated (Hetero)aryl and Alkenyl Halides Enabled by the Controlled Self-Condensation of TMSCF ₃ -Derived CuCF ₃ . Journal of Organic Chemistry, 2019, 84, 15087-15097.	3.2	28
71	Synthesis of Substituted Tetrahydrofuran by Electrophile-Induced Cyclization of 4-Pentene-1,2,3-triols â^' An Example of 5-exo versus 5-endo Cyclization Governed by the Electrophile. European Journal of Organic Chemistry, 2001, 2001, 507-516.	2.4	27
72	Synthesis of 2′-deoxy-2′-phenylselenenyl-furanosyl nucleosides from glycals using electrophilic selenium reagents. Conversion into 2′-deoxynucleosides. Tetrahedron, 1997, 53, 10921-10938.	1.9	26

#	Article	IF	CITATIONS
73	Syntheses of a Novel Fluorinated Trisphosphinoborate Ligand and Its Copper and Silver Complexes. Catalytic Activity toward Nitrene Transfer Reactions. Inorganic Chemistry, 2014, 53, 3991-3999.	4.0	26
74	Pdâ€Catalysed Mono―and Dicarbonylation of Aryl lodides: Insights into the Mechanism and the Selectivity. Chemistry - A European Journal, 2014, 20, 10982-10989.	3.3	26
75	Synthesis and reactivity of cationic iridium(I) complexes of cycloocta-1,5-diene and chiral dithioether ligands. Application as catalyst precursors in asymmetric hydrogenation â€. Journal of the Chemical Society Dalton Transactions, 1997, , 4611-4618.	1.1	25
76	An Improved Synthesis of 4-O-Benzoyl-2,2-difluorooleandrose froml-Rhamnose. Factors Determining the Synthesis of 2,2-Difluorocarbohydrates from 2-Uloses. Journal of Organic Chemistry, 1998, 63, 2184-2188.	3.2	25
77	New camphor-derived sulfur chiral controllers: Synthesis of (2R-exo)-10-methylthio-2-bornanethiol and (2R-exo)-2,10-bis(methylthio)bornane. Tetrahedron: Asymmetry, 1996, 7, 3553-3558.	1.8	24
78	Highly efficient and stereoselective synthesis of β-glycolipids. Organic and Biomolecular Chemistry, 2008, 6, 443-446.	2.8	24
79	Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination. Chemical Communications, 2015, 51, 16342-16345.	4.1	24
80	Stereoselective Synthesis of 2â€~,3â€~-Dideoxy-3â€~-fluoro-2â€~-phenylselenenyl- β-nucleosides from Phenyl 1-Seleno-α-arabino-furanosides through Consecutive 1,2-Migration and Glycosylation under Mitsunobu Conditions. A New Entry to 2â€~,3â€~-Dideoxy-3â€~-fluoronucleosides. Journal of Organic Chemistry, 1999, 64, 1375-1379.	3.2	23
81	Synthesis of erythro and threo furanoid glycals from 1- and 2-phenylselenenyl–carbohydrate derivatives. Carbohydrate Research, 2001, 336, 83-97.	2.3	23
82	Oxidative Activation of C–S Bonds with an Electropositive Nitrogen Promoter Enables Orthogonal Glycosylation of Alkyl over Phenyl Thioglycosides. Organic Letters, 2017, 19, 5490-5493.	4.6	23
83	Synthesis of 2′-deoxy-pyranosyl nucleosides from glycals through consecutive addition of phenylselenenyl chloride and glycosylation. A study of factors controlling the stereoselectivity. Tetrahedron, 1994, 50, 12219-12234.	1.9	22
84	Synthesis of a <i>P</i> ‣tereogenic PNP ^{<i>t</i>Bu,Ph} Ruthenium Pincer Complex and Its Application in Asymmetric Reduction of Ketones. European Journal of Organic Chemistry, 2015, 2015, 3666-3669.	2.4	22
85	Synthesis of erythro and threo furanoid glycals using 5-endo-trig selenoetherification as key step. Tetrahedron Letters, 1999, 40, 1187-1190.	1.4	21
86	Stereoselective Synthesis of 2-Deoxy-2-phenylselenenyl Glycosides from Furanoses: Implication of the Phenylselenenyl Group in the Stereocontrolled Preparation of 2-Deoxy-ribo- and 2-Deoxy-xylo-oligosaccharides. European Journal of Organic Chemistry, 2007, 2007, 3564-3572.	2.4	21
87	Asymmetric hydroformylation of styrene using dithiolato bridged dirhodium catalyst with BDPP as chiral ligand. Tetrahedron: Asymmetry, 1995, 6, 1885-1888.	1.8	20
88	Synthesis of 2′,3′-dideoxy-3′,3′-difluoro and 2′,3′-dideoxy-2′,2′-difluoro-pyranosyl nucleos gemcitabine. Tetrahedron, 1999, 55, 8497-8508.	sides anal	ogues of
89	Efficient recycling of a chiral palladium catalytic system for asymmetric allylic substitutions in ionic liquid. Chemical Communications, 2011, 47, 7869.	4.1	20
90	Highly Selective Palladiumâ€Catalysed Aminocarbonylation of Aryl Iodides using a Bulky Diphosphine Ligand. Advanced Synthesis and Catalysis, 2012, 354, 1971-1979.	4.3	20

#	Article	IF	CITATIONS
91	Synthesis of Fluorosugar Reagents for the Construction of Well-Defined Fluoroglycoproteins. Organic Letters, 2015, 17, 2836-2839.	4.6	20
92	Stereoselective synthesis of nucleosides from 1-thio and 1-seleno glycosides through consecutive 1,2-migration and glycosylation under Mitsunobu conditions. Tetrahedron Letters, 2000, 41, 407-411.	1.4	19
93	Computational Insight into the Reaction Intermediates in the Glycosylation Reaction Assisted by Donor Heteroatoms. Journal of Organic Chemistry, 2003, 68, 686-691.	3.2	19
94	Direct and Efficient Glycosylation Protocol for Synthesizing αâ€Glycolipids: Application to the Synthesis of KRN7000. European Journal of Organic Chemistry, 2008, 2008, 1851-1854.	2.4	19
95	Changing the Palladium Coordination to Phosphinoimidazolines with a Remote Triazole Substituent. Advanced Synthesis and Catalysis, 2011, 353, 3255-3261.	4.3	19
96	Metal-free and VOC-free O-glycosylation in supercritical CO ₂ . Green Chemistry, 2017, 19, 2687-2694.	9.0	19
97	Synthesis of isochromane derivatives by metallocene-promoted reaction of 2-alkoxy-2-fluoro-glycosyl fluorides with benzyl alcohol. Tetrahedron Letters, 1993, 34, 2361-2364.	1.4	18
98	Synthesis of novel diphosphines from d-(+)-glucose. Use in asymmetric hydrogenation. Tetrahedron: Asymmetry, 2000, 11, 4701-4708.	1.8	18
99	The reaction of pyranoside 2-uloses with DAST revised. Synthesis of 1-fluoro-ketofuranosyl fluorides and their reactivity with alcohols. Tetrahedron, 2001, 57, 6733-6743.	1.9	18
100	New chiral diphosphites derived from substituted 9,10-dihydroanthracene. Applications in asymmetric catalytic processes. Tetrahedron: Asymmetry, 2009, 20, 1009-1014.	1.8	17
101	Short and General Procedure for Synthesizing Cis-1,2-Fused 1,3-Oxathiolan-, 1,3-Oxaselenolan-, and 1,3-Oxazolidin-2-imine Carbohydrate Derivatives. Journal of Organic Chemistry, 2010, 75, 514-517.	3.2	17
102	New Chiral P-N Ligands for the Regio- and Stereoselective Pd-Catalyzed Dimerization of Styrene. Molecules, 2011, 16, 1804-1824.	3.8	17
103	Recycling of allylic alkylation Pd catalysts containing phosphine-imidazoline ligands in ionic liquids. Green Chemistry, 2012, 14, 2715.	9.0	17
104	Stereoselective Synthesis of 2-Deoxyglycosides from Sulfanyl Alkenes by Consecutive "One Pot― Cyclization and Glycosylation Reactions. European Journal of Organic Chemistry, 2007, 2007, 2470-2476.	2.4	16
105	Efficient Synthesis of βâ€Glycosphingolipids by Reaction of Stannylceramides with Clycosyl Iodides Promoted by TBAI/AW 300 Molecular Sieves. European Journal of Organic Chemistry, 2009, 2009, 3849-3852.	2.4	16
106	Synthesis of benzyl and methyl 3-benzamido-2,3,6-trideoxy-2-fluoro-î²-l-galactopyranoside: Protected C-2 fluoro analogues of daunosamine. Carbohydrate Research, 1985, 140, 51-59.	2.3	15
107	Ring Contraction vs Fragmentation in the Intramolecular Reactions of 3-O-(Trifluoromethanesulfonyl)pyranosides. Efficient Synthesis of Branched-Chain Furanosides. Journal of Organic Chemistry, 1995, 60, 4353-4358.	3.2	15
108	Stereoselective synthesis of both enantiomers of 1,4-anhydro-alditols, 1,4-anhydro-2-amino-alditols and d- and l-isonucleosides from 2,3-O-isopropylidene-d-glyceraldehyde using iodine-induced cyclization as the key step. Tetrahedron: Asymmetry, 2001, 12, 1635-1643.	1.8	15

#	Article	IF	CITATIONS
109	Synthesis of Hyperbranched βâ€Galceramideâ€Containing Dendritic Polymers that Bind HIVâ€1 rgp120. European Journal of Organic Chemistry, 2010, 2010, 2657-2660.	2.4	15
110	Efficient and regioselective ring-opening of arylaziridines with alcohols, thiols, amines and N-heteroaromatic compounds using sulphated zirconia. Tetrahedron Letters, 2012, 53, 2525-2529.	1.4	15
111	Conformationally-locked N-glycosides: Exploiting long-range non-glycone interactions in the design of pharmacological chaperones for Gaucher disease. European Journal of Medicinal Chemistry, 2015, 90, 258-266.	5.5	15
112	Enantioselective Synthesis of Aminodiols by Sequential Rhodiumâ€Catalysed Oxyamination/Kinetic Resolution: Expanding the Substrate Scope of Amidineâ€Based Catalysis. Chemistry - A European Journal, 2018, 24, 4635-4642.	3.3	15
113	Diazoâ€; azoâ€; and azidoazoles. VII. Imidazo[1,2â€ <i>b</i>]― <i>versus</i> imidazo[2,1â€ <i>c</i>]benzoâ€ <i>as</i> â€triazines. Journal of Heterocyclic Chemistry, 1982, 19, 61-64.	2.6	14
114	New bicyclic nucleosides related to 6-azaisocytidine. Tetrahedron Letters, 1996, 37, 901-904.	1.4	14
115	Ir(I) complexes with oxazoline-thioether ligands: nucleophilic attack of pyridine on coordinated 1,5-cyclooctadiene and application as catalysts in imine hydrogenation. Journal of Organometallic Chemistry, 2004, 689, 1911-1918.	1.8	14
116	Rhodium-catalyzed intermolecular hydroacylation of 1-alkynes: Effect of phosphines and MK-10 on the reaction selectivity. Journal of Organometallic Chemistry, 2007, 692, 1628-1632.	1.8	14
117	Stereoselective Tandem Epoxidation–Alcoholysis/Hydrolysis of Glycals with Molybdenum Catalysts. Advanced Synthesis and Catalysis, 2010, 352, 3407-3418.	4.3	14
118	Synthesis of amino-1,4-anhydro-d-pentitols and amino-1,5-anhydro-d-hexitols with the arabino configuration from (R)-glycidol. Tetrahedron: Asymmetry, 2003, 14, 1847-1856.	1.8	13
119	Stereoselective iodine-induced cyclisation of alkene acetals. Application to the synthesis of 3-deoxy-exo-glycals and substituted tetrahydrofurans. Tetrahedron Letters, 2004, 45, 3721-3724.	1.4	13
120	Towards the preparation of 2″-deoxy-2″-fluoro-adenophostin A. Study of the glycosylation reaction. Tetrahedron, 2008, 64, 10906-10911.	1.9	13
121	Rhodium-Catalyzed Intermolecular Hydroiminoacylation of Alkenes: Comparison of Neutral and Cationic Catalytic Systems. Organometallics, 2009, 28, 2976-2985.	2.3	13
122	Effect of pH on catalyst activity and selectivity in the aqueous Fischer–Tropsch synthesis catalyzed by cobalt nanoparticles. Catalysis Communications, 2015, 71, 88-92.	3.3	13
123	Synthesis of methyl 3-acetamido-4-O-benzoyl-2,3,6-trideoxy-2-fluoro-β-l-mannopyranoside: a protected 2-fluoro analogue of acosamine. Carbohydrate Research, 1986, 152, 310-315.	2.3	12
124	Preparation, structure and reactivity of dinuclear aminothiolate-bridged iridium complexes. Journal of the Chemical Society Dalton Transactions, 1995, , 2137-2142.	1.1	12
125	Synthesis and characterization of rhodium complexes containing atropisomeric sulfur ligands. Structure of [{Rh2(µ-L)(CO)3[P(OC6H4But-o)3]}2](H2L = 1,1′-binaphthalene-2,2′-dithiol). Journal of the Chemical Society Dalton Transactions, 1996, , 969-973.	1.1	12
126	Hydroformylation of allyl ethers. A study of the regioselectivity using rhodium catalysts. Journal of Molecular Catalysis A, 1999, 137, 93-100.	4.8	12

#	Article	IF	CITATIONS
127	An Expeditious and Efficient Procedure for the Synthesis of Unsaturated Acyclonucleosides of ZConfiguration Related to D4T. Journal of Organic Chemistry, 2003, 68, 1172-1175.	3.2	12
128	Oxidative carbonylation of aniline with new cobalt catalytic systems. Canadian Journal of Chemistry, 2005, 83, 764-768.	1.1	12
129	Feâ€Catalyzed Olefin Epoxidation with Tridentate Nonâ€Heme Ligands and Hydrogen Peroxide as the Oxidant. ChemCatChem, 2013, 5, 1092-1095.	3.7	12
130	Tuning the Stereoelectronic Properties of 1-Sulfanylhex-1-enitols for the Sequential Stereoselective Synthesis of 2-Deoxy-2-iodo-β-d-allopyranosides. Journal of Organic Chemistry, 2014, 79, 3060-3068.	3.2	12
131	Topological Defects in Hyperbranched Glycopolymers Enhance Binding to Lectins. Chemistry - A European Journal, 2017, 23, 15790-15794.	3.3	12
132	Montmorillonite K10 as a suitable co-catalyst for atom economy in chelation-assisted intermolecular hydroacylation. Tetrahedron Letters, 2003, 44, 1631-1634.	1.4	11
133	Stereoselective synthesis of l-isonucleosides. Tetrahedron Letters, 2003, 44, 3771-3773.	1.4	11
134	Novel Polymer Stabilized Water Soluble Ru-Nanoparticles as Aqueous Colloidal Fischer–Tropsch Catalysts. Topics in Catalysis, 2013, 56, 1208-1219.	2.8	11
135	Correlation between Hydrocarbon Product Distribution and Solvent Composition in the Fischer–Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanoparticles. ACS Catalysis, 2015, 5, 4568-4578.	11.2	11
136	Core-substituted naphthalenediimides anchored on BiVO ₄ for visible light-driven water splitting. Green Chemistry, 2017, 19, 2448-2462.	9.0	11
137	A new and extremely fast synthesis of 2-deoxy-2,2-difluoro-d-arabino-hexose (2-deoxy-2,2-difluoro-d-glucose). Carbohydrate Research, 1992, 233, C1-C3.	2.3	10
138	Stereoselective Synthesis of Branched and Bicyclo 2â€~,3â€~-Dideoxy-threo-furanosyl Nucleosides from Pyranoses Using a Ring Contraction Reaction as the Key Step. Journal of Organic Chemistry, 1997, 62, 3696-3701.	3.2	10
139	Salcyâ€Naphthalene Cobalt Complexes as Catalysts for the Synthesis of High Molecular Weight Polycarbonates. ChemCatChem, 2017, 9, 3974-3981.	3.7	10
140	Reactivity of tetracarbonyl dithiolate-bridged rhodium(I) complexes with diphosphines. Journal of Organometallic Chemistry, 1998, 551, 375-381.	1.8	9
141	Stereoselective synthesis of 2′,3′-dideoxy-nucleosides via intramolecular glycosylation of phenyl 1-seleno-glycosides. Synthesis of 2′,3′-dideoxythymidine. Tetrahedron Letters, 1998, 39, 1807-1810.	1.4	9
142	The Enantioselective Formal Synthesis of (+)-Avenaciolide and (+)-Isoavenaciolide from Tri-O-acetyl-D-glucal Using a Ring Contraction Reaction as the Key Step. European Journal of Organic Chemistry, 2000, 2000, 2285-2289.	2.4	9
143	Selective hydrogenation of \hat{l}_{\pm}, \hat{l}^2 -unsaturated oxosteroids with homogeneous rhodium catalysts. Journal of Molecular Catalysis A, 2006, 247, 275-282.	4.8	9
144	Stannyl ceramides as efficient acceptors for synthesising β-galactosyl ceramides. Organic and Biomolecular Chemistry, 2008, 6, 3831.	2.8	9

#	Article	IF	CITATIONS
145	Ruthenium-catalyzed cross-metathesis with electron-rich phenyl vinyl sulfide enables access to 2,3-dideoxy-d-ribopyranose ring system donors. RSC Advances, 2014, 4, 19794-19799.	3.6	9
146	Chemical Access to <scp>d</scp> -Sarmentose Units Enables the Total Synthesis of Cardenolide Monoglycoside N-1 from <i>Nerium oleander</i> . Journal of Organic Chemistry, 2017, 82, 3327-3333.	3.2	9
147	Palladium-catalyzed allylic amination: a powerful tool for the enantioselective synthesis of acyclic nucleoside phosphonates. Organic and Biomolecular Chemistry, 2017, 15, 7227-7234.	2.8	9
148	Regioselectivity Control in Pd-Catalyzed Telomerization of Isoprene Enabled by Solvent and Ligand Selection. ACS Catalysis, 2020, 10, 11458-11465.	11.2	9
149	Isochromane "versus―O-glycoside synthesis. A study of the reaction of 2-alkoxy-2-fluoro-glycosyl fluorides with alcohols Tetrahedron, 1994, 50, 9125-9134.	1.9	8
150	2-Alkoxy-2-fluoro-glycosyl fluorides as 1,2-dielectrophilic synthons for the synthesis of naphtho- and benzo-dihydrofuran derivatives. Tetrahedron, 1996, 52, 7797-7806.	1.9	8
151	Synthesis of carbohydrate-based vinyl selenides via Wittig-type reactions. Carbohydrate Research, 2007, 342, 736-743.	2.3	8
152	Substrateâ€Regiocontrolled Synthesis of Enantioenriched Allylic Amines by Palladium atalysed Asymmetric Allylic Amination: Formal Synthesis of Fagomine. Advanced Synthesis and Catalysis, 2016, 358, 4057-4066.	4.3	8
153	Effect of polymeric stabilizers on Fischer–Tropsch synthesis catalyzed by cobalt nanoparticles supported on TiO2. Journal of Molecular Catalysis A, 2016, 417, 43-52.	4.8	8
154	The synthesis and single-crystal X-ray structure of the first mononuclear iridium carbonyl hydride with two orthometallated phosphite ligands, cis-[IrHCO{P(O-o-tBuC6H3) (O-o-tBuC6H4)2}2]. Inorganic Chemistry Communication, 1999, 2, 21-24.	3.9	7
155	Studies on the Zn(II)-mediated electrophilic selenocyclization and elimination of 3,4-O-isopropylidene-protected hydroxyalkenyl sulfides: synthesis of a 2-phenylselenenyl glycal. Carbohydrate Research, 2010, 345, 1041-1045.	2.3	7
156	C1-Symmetric carbohydrate diphosphite ligands for asymmetric Pd-allylic alkylation reactions. Study of the key Pd-allyl intermediates. Dalton Transactions, 2011, 40, 2852.	3.3	7
157	Sequential Directed Epoxydation-Acidolysis from Glycals with MCPBA. A Flexible Approach to Protected Glycosyl Donors. Journal of Organic Chemistry, 2011, 76, 9622-9629.	3.2	7
158	Fluorinated triazole-containing sphingosine analogues. Syntheses andin vitroevaluation as SPHK inhibitors. Organic and Biomolecular Chemistry, 2018, 16, 7230-7235.	2.8	7
159	Hydroformylation in Organic Synthesis. Catalysis By Metal Complexes, 2000, , 145-187.	0.6	6
160	Designing an effective approach for obtaining methylenecarboxylate analogues of adenophostin A. Preliminary results. Carbohydrate Research, 2009, 344, 2559-2567.	2.3	5
161	Enantioselective Formal Synthesis of Nectrisine Using a Palladium-Catalyzed Asymmetric Allylic Amination and Cross-Metathesis as Key Steps. Journal of Organic Chemistry, 2016, 81, 5217-5221.	3.2	5
162	Highly reactive 2-deoxy-2-iodo- <scp>d</scp> - <i>allo</i> and <scp>d</scp> - <i>gulo</i> pyranosyl sulfoxide donors ensure l²-stereoselective glycosylations with steroidal aglycones. RSC Advances, 2018, 8, 30076-30079.	3.6	5

#	Article	IF	CITATIONS
163	Norbornene Bidentate Ligands: Coordination Chemistry and Enantioselective Catalytic Applications. European Journal of Inorganic Chemistry, 2010, 2010, 758-766.	2.0	4
164	Effect of the Polymeric Stabilizer in the Aqueous Phase Fischer-Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanocatalysts. Nanomaterials, 2017, 7, 58.	4.1	4
165	Enantioselective Synthesis of 3â€Heterosubstitutedâ€2â€aminoâ€1â€ols by Sequential Metalâ€Free Diene Aziridination/Kinetic Resolution. Chemistry - A European Journal, 2019, 25, 12628-12635.	3.3	4
166	Revealing 2-dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as sphingosine kinase 2 inhibitors: Some hints on the structural basis for selective inhibition. Bioorganic Chemistry, 2022, 121, 105668.	4.1	2
167	Synthesis of d/l-erythro-Sphingosine Using a Tethered Aminohydroxylation Reaction as the Key Step. Synthesis, 2009, 2009, 710-712.	2.3	1
168	Probing Siteâ€Selective Conjugation Chemistries for the Construction of Homogeneous Synthetic Glycodendriproteins. ChemBioChem, 2022, , e202200020.	2.6	1
169	Computational Insight into the Reaction Intermediates in the Glycosylation Reaction Assisted by Donor Heteroatoms ChemInform, 2003, 34, no.	0.0	ο
170	Montmorillonite K10 as a Suitable Co-Catalyst for Atom Economy in Chelation-Assisted Intermolecular Hydroacylation ChemInform, 2003, 34, no.	0.0	0
171	Synthesis of 2-Substituted-benzothiazoles by Palladium-Catalyzed Intramolecular Cyclization of o-Bromophenylthioureas and o-Bromophenylthioamides ChemInform, 2003, 34, no.	0.0	ο
172	An Efficient Method for the Synthesis of Enantiopure Phosphine?Imidazoline Ligands: Application to the Ir-Catalyzed Hydrogenation of Imines ChemInform, 2005, 36, no.	0.0	0
173	C1 and C2-Symmetric Carbohydrate Phosphorus Ligands in Asymmetric Catalysis. ChemInform, 2005, 36, no.	0.0	0
174	Synthesis of Polyfluorinated KRN7000 Analogues and Biological Implications. Proceedings (mdpi), 2019, 22, 89.	0.2	0