Muhsincan Sesen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2725244/publications.pdf

Version: 2024-02-01

516710 642732 31 758 16 23 citations h-index g-index papers 33 33 33 916 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermally-actuated microfluidic membrane valve for point-of-care applications. Microsystems and Nanoengineering, 2021, 7, 48.	7.0	12
2	Image-Based Single Cell Sorting Automation in Droplet Microfluidics. Scientific Reports, 2020, 10, 8736.	3.3	65
3	Capacitive Sensing for Monitoring of Microfluidic Protocols Using Nanoliter Dispensing and Acoustic Mixing. Analytical Chemistry, 2020, 92, 10725-10732.	6.5	6
4	Coalescence of Surfactant-Stabilized Adjacent Droplets Using Surface Acoustic Waves. Analytical Chemistry, 2019, 91, 7538-7545.	6.5	17
5	Selective droplet splitting using single layer microfluidic valves. Sensors and Actuators B: Chemical, 2019, 292, 233-240.	7.8	18
6	Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using <i>in situ</i> X-ray scattering. Soft Matter, 2019, 15, 9565-9578.	2.7	11
7	Droplet control technologies for microfluidic high throughput screening (\hat{l} /4HTS). Lab on A Chip, 2017, 17, 2372-2394.	6.0	82
8	Surface acoustic wave enabled pipette on a chip. Lab on A Chip, 2017, 17, 438-447.	6.0	40
9	Microfluidic plug steering using surface acoustic waves. Lab on A Chip, 2015, 15, 3030-3038.	6.0	55
10	Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing. Lab on A Chip, 2015, 15, 4206-4216.	6.0	68
11	Using Nano-mechanics and Surface Acoustic Wave (SAW) for Disease Monitoring and Diagnostics at a Cellular Level in Red Blood Cells. Physics Procedia, 2015, 70, 18-20.	1.2	2
12	Single line particle focusing using a vibrating bubble. Applied Physics Letters, 2014, 105, .	3.3	20
13	Characterization of adhesive properties of red blood cells using surface acoustic wave induced flows for rapid diagnostics. Applied Physics Letters, 2014, 105, .	3.3	40
14	Microfluidic on-demand droplet merging using surface acoustic waves. Lab on A Chip, 2014, 14, 3325-3333.	6.0	129
15	Hydrodynamic cavitation kills prostate cells and ablates benign prostatic hyperplasia tissue. Experimental Biology and Medicine, 2013, 238, 1242-1250.	2.4	16
16	Boiling heat transfer enhancement of magnetically actuated nanofluids. Applied Physics Letters, 2013, 102, 163107.	3.3	18
17	Submerged jet impingement cooling using nanostructured plates. International Journal of Heat and Mass Transfer, 2013, 59, 414-422.	4.8	16
18	Subcooled Flow Boiling Over Nanostructured Plate Integrated Into a Rectangular Channel., 2013,,.		1

#	Article	IF	CITATIONS
19	Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid. Journal of Applied Physics, 2012, 112, 064320.	2.5	24
20	Reversibility of Functional and Structural Changes of Lysozyme Subjected to Hydrodynamic Flow. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, .	0.8	4
21	Multiphase Submerged Jet Impingement Cooling Utilizing Nanostructured Plates. , 2012, , .		O
22	Ferrofluid actuation with varying magnetic fields for micropumping applications. Microfluidics and Nanofluidics, 2012, 13, 683-694.	2.2	40
23	Kidney Stone Erosion by Micro Scale Hydrodynamic Cavitation and Consequent Kidney Stone Treatment. Annals of Biomedical Engineering, 2012, 40, 1895-1902.	2.5	22
24	Magnetic Nanoparticle Based Nanofluid Actuation With Dynamic Magnetic Fields., 2011,,.		3
25	Bubbly Cavitating Flow Generation and Investigation of Its Erosional Nature for Biomedical Applications. IEEE Transactions on Biomedical Engineering, 2011, 58, 1337-1346.	4.2	18
26	A NOVEL MAGNETOMECHANICAL PUMP TO ACTUATE FERROFLUIDS IN MINICHANNELS. , 2011, , .		3
27	Compact nanostructure integrated pool boiler for microscale cooling applications. Micro and Nano Letters, 2010, 5, 203.	1.3	21
28	Submerged Jet Impingement Cooling of a Nanostructured Plate., 2010,,.		0
29	A Compact Nanostructure Enhanced Heat Sink With Flow in a Rectangular Channel. , 2010, , .		2
30	Magnetic Actuation of Nanofluids With Ferromagnetic Particles. , 2010, , .		0
31	A Compact Nanostructure Integrated Pool Boiler for Microscale Cooling Applications. , 2009, , .		1