
Moritz Reckling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2725086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe. European Journal of Agronomy, 2022, 133, 126415.	1.9	44
2	More diverse but less intensive farming enhances biodiversity. Trends in Ecology and Evolution, 2022, 37, 395-396.	4.2	9
3	Interactive Effects of Biochar, Nitrogen, and Phosphorous on the Symbiotic Performance, Growth, and Nutrient Uptake of Soybean (Glycine max L.). Agronomy, 2022, 12, 27.	1.3	4
4	Methods of yield stability analysis in long-term field experiments. A review. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	32
5	Grain Yield Stability of Cereal-Legume Intercrops Is Greater Than Sole Crops in More Productive Conditions. Agriculture (Switzerland), 2021, 11, 255.	1.4	31
6	Legume-Modified Rotations Deliver Nutrition With Lower Environmental Impact. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	14
7	Towards an enhanced indication of provisioning ecosystem services in agro-ecosystems. Environmental Monitoring and Assessment, 2021, 193, 269.	1.3	16
8	Yield variability trends of winter wheat and spring barley grown during 1932–2019 in the Askov Long-term Experiment. Field Crops Research, 2021, 264, 108083.	2.3	13
9	Soybean Nodulation Response to Cropping Interval and Inoculation in European Cropping Systems. Frontiers in Plant Science, 2021, 12, 638452.	1.7	16
10	Enhanced Soybean Productivity by Inoculation With Indigenous Bradyrhizobium Strains in Agroecological Conditions of Northeast Germany. Frontiers in Plant Science, 2021, 12, 707080.	1.7	8
11	Re-designing organic grain legume cropping systems using systems agronomy. European Journal of Agronomy, 2020, 112, 125951.	1.9	32
12	Response of Soybean to Hydrochar-Based Rhizobium Inoculation in Loamy Sandy Soil. Microorganisms, 2020, 8, 1674.	1.6	10
13	Characterization of Rhizobia for the Improvement of Soybean Cultivation at Cold Conditions in Central Europe. Microbes and Environments, 2020, 35, n/a.	0.7	33
14	Diverse approaches to crop diversification in agricultural research. A review. Agronomy for Sustainable Development, 2020, 40, 1.	2.2	122
15	The Effect of Biochars and Endophytic Bacteria on Growth and Root Rot Disease Incidence of Fusarium Infested Narrow-Leafed Lupin (Lupinus angustifolius L.). Microorganisms, 2020, 8, 496.	1.6	26
16	Soybean in No-Till Cover-Crop Systems. Agronomy, 2019, 9, 883.	1.3	8
17	POOR FARMERS – POOR YIELDS: SOCIO-ECONOMIC, SOIL FERTILITY AND CROP MANAGEMENT INDICATORS AFFECTING CLIMBING BEAN PRODUCTIVITY IN NORTHERN RWANDA. Experimental Agriculture, 2019, 55, 14-34.	0.4	29
18	Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe. Agronomy for Sustainable Development, 2018, 38, 63.	2.2	55

MORITZ RECKLING

#	ARTICLE	IF	CITATIONS
19	Detecting global trends of cereal yield stability by adjusting the coefficient of variation. European Journal of Agronomy, 2018, 99, 30-36.	1.9	68
20	Potential effects of biochar-based microbial inoculants in agriculture. Environmental Sustainability, 2018, 1, 19-24.	1.4	50
21	Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 2017, 78, 38-42.	1.4	75
22	Grain Legume Production and Use in European Agricultural Systems. Advances in Agronomy, 2017, , 235-303.	2.4	176
23	Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations. Sustainability, 2017, 9, 2267.	1.6	47
24	Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems. Frontiers in Plant Science, 2016, 7, 669.	1.7	111
25	A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation. Frontiers in Plant Science, 2016, 7, 1700.	1.7	60
26	A cropping system assessment framework—Evaluating effects of introducing legumes into crop rotations. European Journal of Agronomy, 2016, 76, 186-197.	1.9	123
27	Grain legume decline and potential recovery in European agriculture: a review. Agronomy for Sustainable Development, 2016, 36, 1.	2.2	146
28	Ecological Recycling Agriculture to Enhance Agro-Ecosystem Services in the Baltic Sea Region: Guidelines for Implementation. Land, 2015, 4, 737-753.	1.2	6
29	Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crops Research, 2015, 175, 64-79.	2.3	218
30	Editorial: crop diversification, a key pillar for the agroecological transition. Frontiers in Agronomy, 0, 4, .	1.5	2