
Laura C Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ergocalciferol in New-onset Type 1 Diabetes: A Randomized Controlled Trial. Journal of the Endocrine Society, 2022, 6, bvab179.	0.1	13
2	Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nature Communications, 2022, 13, 735.	5.8	20
3	Weight Loss Outcomes With Telemedicine During COVID-19. Frontiers in Endocrinology, 2022, 13, 793290.	1.5	6
4	High-throughput analysis of ANRIL circRNA isoforms in human pancreatic islets. Scientific Reports, 2022, 12, 7745.	1.6	4
5	The Independent Risk of Obesity and Diabetes and Their Interaction in COVIDâ€19: A Retrospective Cohort Study. Obesity, 2021, 29, 971-975.	1.5	17
6	Preadmission predictors of severe COVID-19 in patients with diabetes mellitus. Journal of Diabetes and Its Complications, 2021, 35, 107967.	1.2	6
7	In vivo screen identifies a SIK inhibitor that induces Î ² cell proliferation through a transient UPR. Nature Metabolism, 2021, 3, 682-700.	5.1	18
8	Career Advancement for Women in Diabetes-Related Research: Developing and Retaining Female Talent. Diabetes, 2021, 70, 1634-1637.	0.3	4
9	Career Advancement for Women in Diabetes-Related Research: Developing and Retaining Female Talent. Diabetes Care, 2021, 44, 1744-1747.	4.3	5
10	Endoplasmic Reticulum Stress Induced Proliferation Remains Intact in Aging Mouse β-Cells. Frontiers in Endocrinology, 2021, 12, 734079.	1.5	4
11	Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metabolism, 2021, 33, 2174-2188.e5.	7.2	127
12	Living Dangerously: Protective and Harmful ER Stress Responses in Pancreatic Î ² -Cells. Diabetes, 2021, 70, 2431-2443.	0.3	31
13	Intersection of the ATF6 and XBP1 ER stress pathways in mouse islet cells. Journal of Biological Chemistry, 2020, 295, 14164-14177.	1.6	33
14	Continuous glucose monitoring reduces pubertal hyperglycemia of type 1 diabetes. Journal of Pediatric Endocrinology and Metabolism, 2020, 33, 865-872.	0.4	4
15	T2D Risk Genes: Exome Sequencing Goes Straight to the Source. Cell Metabolism, 2019, 30, 10-11.	7.2	5
16	Atf6α impacts cell number by influencing survival, death and proliferation. Molecular Metabolism, 2019, 27, S69-S80.	3.0	23
17	DNA Damage Does Not Cause BrdU Labeling of Mouse or Human β-Cells. Diabetes, 2019, 68, 975-987.	0.3	15
18	Hypusine biosynthesis in β cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis. Science Signaling, 2019, 12, .	1.6	37

Laura C Alonso

#	Article	IF	CITATIONS
19	<i>CDKN2A/B</i> T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets. Diabetes, 2018, 67, 872-884.	0.3	41
20	Pancreatic Islet Embedding for Paraffin Sections. Journal of Visualized Experiments, 2018, , .	0.2	7
21	Adipose tissue-derived free fatty acids initiate myeloid cell accumulation in mouse liver in states of lipid oversupply. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E758-E770.	1.8	12
22	ANRIL: A IncRNA at the CDKN2A/B Locus With Roles in Cancer and Metabolic Disease. Frontiers in Endocrinology, 2018, 9, 405.	1.5	142
23	Children with type 1 diabetes who experienced a honeymoon phase had significantly lower LDL cholesterol 5 years after diagnosis. PLoS ONE, 2018, 13, e0196912.	1.1	18
24	Partial clinical remission in type 1 diabetes: a comparison of the accuracy of total daily dose of insulin of <0.3 units/kg/day to the gold standard insulin-dose adjusted hemoglobin A1c of â‰\$ for the detection of partial clinical remission. Journal of Pediatric Endocrinology and Metabolism, 2017, 30, 823-830.	0.4	27
25	A predictive model for lack of partial clinical remission in new-onset pediatric type 1 diabetes. PLoS ONE, 2017, 12, e0176860.	1.1	47
26	In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. Molecular Therapy, 2016, 24, 1247-1257.	3.7	98
27	Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia, 2016, 59, 1579-1593.	2.9	71
28	Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia. Journal of Biological Chemistry, 2016, 291, 16221-16230.	1.6	17
29	PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes, 2016, 65, 1283-1296.	0.3	40
30	Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor. Diabetes, 2016, 65, 981-995.	0.3	85
31	Evaluation, Medical Therapy, and Course of Adult Persistent Hyperinsulinemic Hypoglycemia After Roux-En-Y Gastric Bypass Surgery: A Case Series. Endocrine Practice, 2015, 21, 237-246.	1.1	18
32	Insulin demand regulates \hat{l}^2 cell number via the unfolded protein response. Journal of Clinical Investigation, 2015, 125, 3831-3846.	3.9	175
33	The Islet Estrogen Receptor-α Is Induced by Hyperglycemia and Protects Against Oxidative Stress-Induced Insulin-Deficient Diabetes. PLoS ONE, 2014, 9, e87941.	1.1	40
34	Human \hat{I}^2 -cell regeneration. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 102-108.	1.2	10
35	Glucagon Regulates Hepatic Kisspeptin to Impair Insulin Secretion. Cell Metabolism, 2014, 19, 667-681.	7.2	168
36	Lipotoxicity in the Pancreatic Beta Cell: Not Just Survival and Function, but Proliferation as Well?. Current Diabetes Reports, 2014, 14, 492.	1.7	104

Laura C Alonso

#	Article	IF	CITATIONS
37	Î ² -Catenin Links Hepatic Metabolic Zonation with Lipid Metabolism and Diet-Induced Obesity in Mice. American Journal of Pathology, 2014, 184, 3284-3298.	1.9	50
38	Time-dependent changes in glucose and insulin regulation during intermittent hypoxia and continuous hypoxia. European Journal of Applied Physiology, 2013, 113, 467-478.	1.2	36
39	Adaptive β-cell proliferation increases early in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet cyclin D2 expression. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E149-E159.	1.8	114
40	Exogenous Glucose Administration Impairs Glucose Tolerance and Pancreatic Insulin Secretion during Acute Sepsis in Non-Diabetic Mice. PLoS ONE, 2013, 8, e67716.	1.1	16
41	Free Fatty Acids Block Glucose-Induced β-Cell Proliferation in Mice by Inducing Cell Cycle Inhibitors p16 and p18. Diabetes, 2012, 61, 632-641.	0.3	65
42	ChREBP Mediates Glucose-Stimulated Pancreatic Î ² -Cell Proliferation. Diabetes, 2012, 61, 2004-2015.	0.3	98
43	Loss of HGF/c-Met Signaling in Pancreatic β-Cells Leads to Incomplete Maternal β-Cell Adaptation and Gestational Diabetes Mellitus. Diabetes, 2012, 61, 1143-1152.	0.3	96
44	Simultaneous Measurement of Insulin Sensitivity, Insulin Secretion, and the Disposition Index in Conscious Unhandled Mice. Obesity, 2012, 20, 1403-1412.	1.5	41
45	Disruption of Hepatocyte Growth Factor/c-Met Signaling Enhances Pancreatic β-Cell Death and Accelerates the Onset of Diabetes. Diabetes, 2011, 60, 525-536.	0.3	104
46	Activation of Protein Kinase C-ζ in Pancreatic β-Cells In Vivo Improves Glucose Tolerance and Induces β-Cell Expansion via mTOR Activation. Diabetes, 2011, 60, 2546-2559.	0.3	42
47	Hyperinsulinemia predicts survival in a hyperglycemic mouse model of critical illness*. Critical Care Medicine, 2009, 37, 2596-2603.	0.4	7
48	Intermittent hypoxia reverses the diurnal glucose rhythm and causes pancreatic β ell replication in mice. Journal of Physiology, 2008, 586, 899-911.	1.3	109
49	Intermittent Hypoxia Causes Insulin Resistance in Lean Mice Independent of Autonomic Activity. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 851-857.	2.5	315
50	Glucose Infusion in Mice: A New Model to Induce Â-Cell Replication. Diabetes, 2007, 56, 1792-1801.	0.3	236
51	The hair cycle. Journal of Cell Science, 2006, 119, 391-393.	1.2	273
52	Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. Journal of Cell Biology, 2005, 170, 559-570.	2.3	48
53	Stem cells in the skin: waste not, Wnt not. Genes and Development, 2003, 17, 1189-1200.	2.7	297
54	Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. Journal of Cell Biology, 2003, 163, 609-623.	2.3	234

#	Article	IF	CITATIONS
55	Retinoic acid in the anteroposterior patterning of the zebrafish trunk. Roux's Archives of Developmental Biology, 1995, 205, 103-113.	1.2	24