Daniel B Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2724878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anaplastic Lymphoma Kinase Inhibition in Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2010, 363, 1693-1703.	13.9	4,141
2	Clinical Features and Outcome of Patients With Non–Small-Cell Lung Cancer Who Harbor <i>EML4-ALK</i> . Journal of Clinical Oncology, 2009, 27, 4247-4253.	0.8	1,775
3	Crizotinib in <i>ROS1</i> -Rearranged Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2014, 371, 1963-1971.	13.9	1,656
4	Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncology, The, 2012, 13, 1011-1019.	5.1	1,176
5	Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nature Communications, 2016, 7, 10501.	5.8	1,163
6	Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncology, The, 2011, 12, 1004-1012.	5.1	847
7	Clinical Experience With Crizotinib in Patients With Advanced <i>ALK</i> -Rearranged Non–Small-Cell Lung Cancer and Brain Metastases. Journal of Clinical Oncology, 2015, 33, 1881-1888.	0.8	555
8	CSF Concentration of the Anaplastic Lymphoma Kinase Inhibitor Crizotinib. Journal of Clinical Oncology, 2011, 29, e443-e445.	0.8	546
9	Assessment of Resistance Mechanisms and Clinical Implications in Patients With <i>EGFR</i> T790M–Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncology, 2018, 4, 1527.	3.4	522
10	EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncology, The, 2012, 13, e23-e31.	5.1	505
11	RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nature Communications, 2015, 6, 6377.	5.8	498
12	BIM Mediates EGFR Tyrosine Kinase Inhibitor-Induced Apoptosis in Lung Cancers with Oncogenic EGFR Mutations. PLoS Medicine, 2007, 4, e315.	3.9	444
13	Structural, Biochemical, and Clinical Characterization of Epidermal Growth Factor Receptor (EGFR) Exon 20 Insertion Mutations in Lung Cancer. Science Translational Medicine, 2013, 5, 216ra177.	5.8	438
14	A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature, 2012, 483, 613-617.	13.7	430
15	Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non–Small-Cell Lung Cancers Dependent on the Epidermal Growth Factor Receptor Pathway. Clinical Lung Cancer, 2009, 10, 281-289.	1.1	394
16	Randomized Phase II Study of Erlotinib Plus Tivantinib Versus Erlotinib Plus Placebo in Previously Treated Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2011, 29, 3307-3315.	0.8	379
17	Brain metastases in patients with EGFR -mutated or ALK -rearranged non-small-cell lung cancers. Lung Cancer, 2015, 88, 108-111.	0.9	369
18	Intracranial Efficacy of Crizotinib Versus Chemotherapy in Patients With Advanced <i>ALK</i> Positive Non–Small-Cell Lung Cancer: Results From PROFILE 1014. Journal of Clinical Oncology, 2016, 34, 2858-2865.	0.8	216

#	Article	IF	CITATIONS
19	Development of Central Nervous System Metastases in Patients with Advanced Non–Small Cell Lung Cancer and Somatic <i>EGFR</i> Mutations Treated with Gefitinib or Erlotinib. Clinical Cancer Research, 2010, 16, 5873-5882.	3.2	209
20	Durable Clinical Response to Entrectinib in NTRK1-Rearranged Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2015, 10, 1670-1674.	0.5	197
21	Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells. Nature Genetics, 2006, 38, 1269-1277.	9.4	167
22	The Impact of Initial Gefitinib or Erlotinib versus Chemotherapy on Central Nervous System Progression in Advanced Non–Small Cell Lung Cancer with <i>EGFR</i> Mutations. Clinical Cancer Research, 2012, 18, 4406-4414.	3.2	166
23	Compound EGFR Mutations and Response to EGFR Tyrosine Kinase Inhibitors. Journal of Thoracic Oncology, 2013, 8, 118-122.	0.5	166
24	SELECT: A Phase II Trial of Adjuvant Erlotinib in Patients With Resected Epidermal Growth Factor Receptor–Mutant Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2019, 37, 97-104.	0.8	159
25	Effects of Erlotinib in <i>EGFR</i> Mutated Non-Small Cell Lung Cancers with Resistance to Gefitinib. Clinical Cancer Research, 2008, 14, 7060-7067.	3.2	156
26	Pooled analysis of the prospective trials of gefitinib monotherapy for EGFR-mutant non-small cell lung cancers. Lung Cancer, 2007, 58, 95-103.	0.9	154
27	Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non–Small Cell Lung Cancer with <i>EGFR</i> Exon 20 Insertion Mutations from a Phase I/II Trial. Cancer Discovery, 2021, 11, 1688-1699.	7.7	154
28	Mutations in TP53 , PIK3CA , PTEN and other genes in EGFR mutated lung cancers: Correlation with clinical outcomes. Lung Cancer, 2017, 106, 17-21.	0.9	149
29	Preclinical Rationale for Use of the Clinically Available Multitargeted Tyrosine Kinase Inhibitor Crizotinib in ROS1-Translocated Lung Cancer. Journal of Thoracic Oncology, 2012, 7, 1086-1090.	0.5	148
30	<i>In vitro</i> modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant <i>EGFR</i> mutants in non-small-cell lung cancer. Oncotarget, 2015, 6, 38789-38803.	0.8	137
31	Success and failure rates of tumor genotyping techniques in routine pathological samples with non-small-cell lung cancer. Lung Cancer, 2014, 84, 39-44.	0.9	135
32	Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches. Therapeutic Advances in Respiratory Disease, 2016, 10, 113-129.	1.0	125
33	Differential Responses to Erlotinib in Epidermal Growth Factor Receptor (EGFR)-Mutated Lung Cancers With Acquired Resistance to Gefitinib Carrying the L747S or T790M Secondary Mutations. Journal of Clinical Oncology, 2008, 26, 1182-1184.	0.8	121
34	Correlation between Classic Driver Oncogene Mutations in EGFR , ALK , or ROS1 and 22C3–PD-L1 ≥50% Expression in Lung Adenocarcinoma. Journal of Thoracic Oncology, 2017, 12, 878-883.	0.5	109
35	A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. Journal of Clinical Investigation, 2007, 117, 2611-2620.	3.9	109
36	Pemetrexed-based chemotherapy in patients with advanced, ALK-positive non-small cell lung cancer. Annals of Oncology, 2013, 24, 59-66.	0.6	103

#	Article	IF	CITATIONS
37	A Prospective Evaluation of Circulating Tumor Cells and Cell-Free DNA in <i>EGFR</i> -Mutant Non–Small Cell Lung Cancer Patients Treated with Erlotinib on a Phase II Trial. Clinical Cancer Research, 2016, 22, 6010-6020.	3.2	100
38	Genotype-driven therapies for non-small cell lung cancer: focus on <i>EGFR</i> , <i>KRAS</i> and <i>ALK</i> gene abnormalities. Therapeutic Advances in Medical Oncology, 2011, 3, 113-125.	1.4	96
39	Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer, 2014, 83, 37-43.	0.9	86
40	Impact of MET inhibitors on survival among patients with non-small cell lung cancer harboring MET exon 14 mutations: a retrospective analysis. Lung Cancer, 2019, 133, 96-102.	0.9	85
41	Safety and Efficacy of PD-1 Inhibitors Among HIV-Positive Patients With Non–Small Cell Lung Cancer. Journal of Thoracic Oncology, 2018, 13, 1037-1042.	0.5	83
42	Erlotinib at a Dose of 25 mg Daily for Non-small Cell Lung Cancers with EGFR Mutations. Journal of Thoracic Oncology, 2010, 5, 1048-1053.	0.5	76
43	β-Catenin Contributes to Lung Tumor Development Induced by EGFR Mutations. Cancer Research, 2014, 74, 5891-5902.	0.4	76
44	Management and Future Directions in Non-Small Cell Lung Cancer with Known Activating Mutations. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , e353-e365.	1.8	75
45	Lung Adenocarcinoma Manifesting as Pure Ground-Glass Nodules: Correlating CT Size, Volume, Density, and Roundness with Histopathologic Invasion and Size. Journal of Thoracic Oncology, 2017, 12, 1288-1298.	0.5	75
46	Association of Performance Status With Survival in Patients With Advanced Non–Small Cell Lung Cancer Treated With Pembrolizumab Monotherapy. JAMA Network Open, 2021, 4, e2037120.	2.8	73
47	Adequacy of Lymph Node Transbronchial Needle Aspirates Using Convex Probe Endobronchial Ultrasound for Multiple Tumor Genotyping Techniques in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, 1438-1444.	0.5	71
48	Responses to the multitargeted MET/ALK/ROS1 inhibitor crizotinib and co-occurring mutations in lung adenocarcinomas with MET amplification or MET exon 14 skipping mutation. Lung Cancer, 2015, 90, 369-374.	0.9	70
49	Amplification of Wild-type <i>KRAS</i> Imparts Resistance to Crizotinib in <i>MET</i> Exon 14 Mutant Non–Small Cell Lung Cancer. Clinical Cancer Research, 2018, 24, 5963-5976.	3.2	63
50	The safety and efficacy of osimertinib for the treatment of <i>EGFR</i> T790M mutation positive non-small-cell lung cancer. Expert Review of Anticancer Therapy, 2016, 16, 383-390.	1.1	58
51	EGFR-Mutated Lung Cancers Resistant to Osimertinib through EGFR C797S Respond to First-Generation Reversible EGFR Inhibitors but Eventually Acquire EGFR T790M/C797S in Preclinical Models and Clinical Samples. Journal of Thoracic Oncology, 2019, 14, 1995-2002.	0.5	58
52	miR-147b-mediated TCA cycle dysfunction and pseudohypoxia initiate drug tolerance to EGFR inhibitors in lung adenocarcinoma. Nature Metabolism, 2019, 1, 460-474.	5.1	57
53	Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements. Translational Lung Cancer Research, 2016, 5, 331-337.	1.3	56
54	PD-L1 testing using the clone 22C3 pharmDx kit for selection of patients with non–small cell lung cancer to receive immune checkpoint inhibitor therapy: are cytology cell blocks a viable option?. Journal of the American Society of Cytopathology, 2018, 7, 133-141.	0.2	56

#	Article	IF	CITATIONS
55	Activity of the Hsp90 inhibitor luminespib among non-small-cell lung cancers harboring EGFR exon 20 insertions. Annals of Oncology, 2018, 29, 2092-2097.	0.6	56
56	EGFR Testing in Advanced Non–Small-Cell Lung Cancer, A Mini-Review. Clinical Lung Cancer, 2016, 17, 483-492.	1.1	52
57	Antitumor activity of TAK-788 in NSCLC with EGFR exon 20 insertions Journal of Clinical Oncology, 2019, 37, 9007-9007.	0.8	52
58	Treatment-Related Toxicities in a Phase II Trial of Dasatinib in Patients with Squamous Cell Carcinoma of the Lung. Journal of Thoracic Oncology, 2013, 8, 1434-1437.	0.5	51
59	EGFR Exon 20 Insertion Mutations Display Sensitivity to Hsp90 Inhibition in Preclinical Models and Lung Adenocarcinomas. Clinical Cancer Research, 2018, 24, 6548-6555.	3.2	49
60	TAS6417/CLN-081 Is a Pan-Mutation–Selective EGFR Tyrosine Kinase Inhibitor with a Broad Spectrum of Preclinical Activity against Clinically Relevant <i>EGFR</i> Mutations. Molecular Cancer Research, 2019, 17, 2233-2243.	1.5	49
61	Smoking status and self-reported race affect the frequency of clinically relevant oncogenic alterations in non-small-cell lung cancers at a United States-based academic medical practice. Lung Cancer, 2013, 82, 31-37.	0.9	48
62	Apoptosis induced by JAK2 inhibition is mediated by Bim and enhanced by the BH3 mimetic ABT-737 in JAK2 mutant human erythroid cells. Blood, 2010, 115, 2901-2909.	0.6	46
63	Tumor biomarker testing in non-small-cell lung cancer: A decade of change. Lung Cancer, 2018, 116, 90-95.	0.9	46
64	Family history of lung cancer in never smokers with non-small-cell lung cancer and its association with tumors harboring EGFR mutations. Lung Cancer, 2013, 79, 193-197.	0.9	44
65	Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors. Translational Cancer Research, 2018, 7, S779-S786.	0.4	43
66	Whacking a mole-cule: clinical activity and mechanisms of resistance to third generation EGFR inhibitors in EGFR mutated lung cancers with EGFR-T790M. Translational Lung Cancer Research, 2015, 4, 809-15.	1.3	43
67	MA04.02 Neratinib ± Temsirolimus in HER2-Mutant Lung Cancers: An International, Randomized Phase II Study. Journal of Thoracic Oncology, 2017, 12, S358-S359.	0.5	42
68	Scientific Advances in Thoracic Oncology 2016. Journal of Thoracic Oncology, 2017, 12, 1183-1209.	0.5	40
69	Alterations of tumor microenvironment by carbon monoxide impedes lung cancer growth. Oncotarget, 2016, 7, 23919-23932.	0.8	40
70	Frequent downregulation of the transcription factor Foxa2 in lung cancer through epigenetic silencing. Lung Cancer, 2012, 77, 31-37.	0.9	38
71	Improvement of Type 2 Diabetes in a Lung Cancer Patient Treated With Erlotinib. Diabetes Care, 2006, 29, 1711-1711.	4.3	36
72	Safety and efficacy of immune checkpoint inhibitors in patients with non-small cell lung cancer and hepatitis B or hepatitis C infection. Lung Cancer, 2020, 145, 181-185.	0.9	36

#	Article	IF	CITATIONS
73	PI-RADS Version 2.1: A Critical Review, From the <i>AJR</i> Special Series on Radiology Reporting and Data Systems. American Journal of Roentgenology, 2021, 216, 20-32.	1.0	36
74	Influence of p53 codon 72 exon 4, CSTM1, CSTT1 and CSTP1*B polymorphisms in lung cancer risk in a Brazilian population. Lung Cancer, 2008, 61, 152-162.	0.9	34
75	Pulse Afatinib for ERBB2 Exon 20 Insertion–Mutated Lung Adenocarcinomas. Journal of Thoracic Oncology, 2016, 11, 918-923.	0.5	31
76	Molecular Testing Turnaround Time for Non–Small Cell Lung Cancer in Routine ClinicalÂPractice Confirms Feasibility of CAP/IASLC/AMP Guideline Recommendations: A Single-center Analysis. Clinical Lung Cancer, 2017, 18, e349-e356.	1.1	31
77	Small cell transformation of non-small cell lung cancer on immune checkpoint inhibitors: uncommon or under-recognized?. , 2020, 8, e000697.		31
78	De novo pulmonary small cell carcinomas and large cell neuroendocrine carcinomas harboring EGFR mutations: Lack of response to EGFR inhibitors. Lung Cancer, 2015, 88, 70-73.	0.9	30
79	EGFR delE709_T710insD: A Rare but Potentially EGFR Inhibitor Responsive Mutation in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2012, 7, e19-e20.	0.5	28
80	The Clinical Use of Genomic Profiling to Distinguish Intrapulmonary Metastases From Synchronous Primaries in Non–Small-Cell Lung Cancer: A Mini-Review. Clinical Lung Cancer, 2015, 16, 334-339.e1.	1.1	28
81	Size Measurement and T-staging of Lung Adenocarcinomas Manifesting as Solid Nodules â‰ g 0 mm on CT. Academic Radiology, 2017, 24, 851-859.	1.3	26
82	EGFR-A763_Y764insFQEA Is a Unique Exon 20 Insertion Mutation That Displays Sensitivity to Approved and In-Development Lung Cancer EGFR Tyrosine Kinase Inhibitors. JTO Clinical and Research Reports, 2020, 1, 100051.	0.6	26
83	Concurrent osimertinib plus gefitinib for first-line treatment of EGFR-mutated non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2020, 38, 9507-9507.	0.8	26
84	Surveillance of cytomegalovirus infection in haematopoietic stem cell transplantation patients. Journal of Infection, 2005, 50, 130-137.	1.7	24
85	Experience with targeted next generation sequencing for the care of lung cancer: Insights into promises and limitations of genomic oncology in day-to-day practice. Cancer Treatment Communications, 2015, 4, 174-181.	0.4	24
86	Lung cancer diagnosis and staging in the minimally invasive age with increasing demands for tissue analysis. Translational Lung Cancer Research, 2015, 4, 392-403.	1.3	24
87	Pneumococcemia as the presenting feature of multiple myeloma. American Journal of Hematology, 2004, 77, 277-281.	2.0	23
88	Esophagitis: A Novel Adverse Event of Crizotinib in a Patient with ALK-Positive Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, e23-e24.	0.5	23
89	First report of safety, PK, and preliminary antitumor activity of the oral EGFR/HER2 exon 20 inhibitor TAK-788 (AP32788) in non–small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2018, 36, 9015-9015.	0.8	23
90	Molecular Testing in Lung Cancer: The Time Is Now. Current Oncology Reports, 2010, 12, 335-348.	1.8	22

#	Article	IF	CITATIONS
91	From Hope to Reality: Durable Overall Survival With Immune Checkpoint Inhibitors for Advanced Lung Cancer. Journal of Clinical Oncology, 2019, 37, 2511-2513.	0.8	22
92	Lazarus-Type Response to Crizotinib in a Patient with Poor Performance Status and Advanced MET Exon 14 Skipping Mutation–Positive Lung Adenocarcinoma. Journal of Thoracic Oncology, 2016, 11, e81-e82.	0.5	20
93	Immunohistochemical analysis of C/EBPα in non-small cell lung cancer reveals frequent down-regulation in stage II and IIIA tumors: A correlative study of E3590. Lung Cancer, 2007, 56, 97-103.	0.9	18
94	ALK Translocation in Non-small Cell Lung Cancer with Adenocarcinoma and Squamous Cell Carcinoma Markers. Journal of Thoracic Oncology, 2011, 6, 1439-1440.	0.5	18
95	Prospective Study of Repeated Biopsy Feasibility and Acquired Resistance at Disease Progression in Patients With Advanced <i>EGFR</i> Mutant Lung Cancer Treated With Erlotinib in a Phase 2 Trial. JAMA Oncology, 2016, 2, 1240.	3.4	17
96	Case of fatal sickle cell intrahepatic cholestasis despite use of exchange transfusion in an African-American patient. Journal of the National Medical Association, 2006, 98, 1183-7.	0.6	17
97	A novel splicing mutation of the α-spectrin gene in the original hereditary pyropoikilocytosis kindred. Blood, 2005, 106, 4367-4369.	0.6	16
98	De novo ALK kinase domain mutations are uncommon in kinase inhibitor-naÃ⁻ve ALK rearranged lung cancers. Lung Cancer, 2016, 99, 17-22.	0.9	16
99	HeartÂFailure Associated With the Epidermal Growth Factor Receptor Inhibitor Osimertinib. JACC: CardioOncology, 2020, 2, 119-122.	1.7	16
100	C/EBPα mutations in lung cancer. Lung Cancer, 2006, 53, 253-254.	0.9	15
101	Identification of Somatic Genomic Alterations in Circulating Tumors Cells: Another Step Forward in Non–Small-Cell Lung Cancer?. Journal of Clinical Oncology, 2013, 31, 2236-2239.	0.8	15
102	Identification and Characterization of ALK Kinase Splicing Isoforms in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2014, 9, 248-253.	0.5	15
103	Cases of ALK-Rearranged Lung Cancer with 5-Year Progression-Free Survival with Crizotinib as Initial Precision Therapy. Journal of Thoracic Oncology, 2017, 12, e175-e177.	0.5	15
104	Clinical Benefit of Tyrosine Kinase Inhibitors in Advanced Lung Cancer with <i>EGFR</i> -G719A and Other Uncommon <i>EGFR</i> Mutations. Oncologist, 2021, 26, 281-287.	1.9	15
105	Polymorphism of the CYP1A1*2A gene and susceptibility to lung cancer in a Brazilian population. Jornal Brasileiro De Pneumologia, 2009, 35, 767-772.	0.4	14
106	Cases of ROS1-rearranged lung cancer: when to use crizotinib, entrectinib, lorlatinib, and beyond?. Precision Cancer Medicine, 2020, 3, 17-17.	1.8	14
107	Germline Mutations in Driver Oncogenes and Inherited Lung Cancer Risk Independent of Smoking History. Journal of the National Cancer Institute, 2014, 106, djt361-djt361.	3.0	13
108	Molecular Testing Turnaround Time in Non–Small-Cell Lung Cancer: Monitoring a Moving Target. Clinical Lung Cancer, 2018, 19, e589-e590.	1.1	13

#	Article	IF	CITATIONS
109	Extended-Interval Dosing Strategy of Immune Checkpoint Inhibitors in Lung Cancer: Will it Outlast the COVID-19 Pandemic?. Frontiers in Oncology, 2020, 10, 1193.	1.3	13
110	Association of Extended Dosing Intervals or Delays in Pembrolizumab-based Regimens With Survival Outcomes in Advanced Non–small-cell Lung Cancer. Clinical Lung Cancer, 2021, 22, e379-e389.	1.1	13
111	The rapidly evolving landscape of biomarker testing in non–small cell lung cancer. Cancer Cytopathology, 2021, 129, 179-181.	1.4	13
112	Preclinical Characterization of Mobocertinib Highlights the Putative Therapeutic Window of This Novel EGFR Inhibitor to EGFR Exon 20 Insertion Mutations. JTO Clinical and Research Reports, 2021, 2, 100105.	0.6	13
113	P3.02c-046 Safety, Clinical Activity and Biomarker Results from a Phase Ib Study of Erlotinib plus Atezolizumab in Advanced NSCLC. Journal of Thoracic Oncology, 2017, 12, S1302-S1303.	0.5	12
114	"Rounding―the Size of Pulmonary Nodules. Academic Radiology, 2017, 24, 1422-1427.	1.3	12
115	Acquired Resistance to the ALK Inhibitor Crizotinib in the Absence of an ALK Mutation. Journal of Thoracic Oncology, 2012, 7, 623-625.	0.5	11
116	Role of Multiparametric MR Imaging in Malignancies of the Urogenital Tract. Magnetic Resonance Imaging Clinics of North America, 2016, 24, 187-204.	0.6	11
117	Acquired Resistance to Osimertinib Plus Savolitinib Is Mediated by MET-D1228 and MET-Y1230 Mutations in EGFR-Mutated MET-Amplified Lung Cancer. JTO Clinical and Research Reports, 2020, 1, 100071.	0.6	11
118	A novel mutation in the last exon of ATRX in a patient with alpha-thalassemia myelodysplastic syndrome. European Journal of Haematology, 2006, 76, 432-435.	1.1	10
119	Detection of Crizotinib-Sensitive Lung Adenocarcinomas With MET, ALK, and ROS1 Genomic Alterations via Comprehensive Genomic Profiling. Clinical Lung Cancer, 2015, 16, e105-e109.	1.1	10
120	Radiologic and autopsy findings in a case of fatal immune checkpoint inhibitor-associated pneumonitis. Cancer Treatment and Research Communications, 2018, 15, 17-20.	0.7	10
121	Association Between Immune-Related Adverse Events and Clinical Outcomes to Programmed Cell Death Protein 1/Programmed Death-Ligand 1 Blockade in SCLC. JTO Clinical and Research Reports, 2020, 1, 100074.	0.6	10
122	Activity of AUY922 in NSCLC patients with EGFR exon 20 insertions Journal of Clinical Oncology, 2015, 33, 8015-8015.	0.8	10
123	De novo ERBB2 amplification causing intrinsic resistance to erlotinib in EGFR-L858R mutated TKI-naÃ ⁻ ve lung adenocarcinoma. Lung Cancer, 2017, 114, 108-110.	0.9	9
124	Serum Concentrations of Erlotinib at a Dose of 25 mg Daily. Journal of Thoracic Oncology, 2010, 5, 1311-1312.	0.5	8
125	Activity of Brigatinib in the Setting of AlectinibÂResistance Mediated by ALK I1171S inÂALK-Rearranged Lung Cancer. Journal of Thoracic Oncology, 2019, 14, e1-e3.	0.5	8
126	Erlotinib-Associated Alopecia in a Lung Cancer Patient. Journal of Thoracic Oncology, 2007, 2, 1136-1138.	0.5	7

#	Article	IF	CITATIONS
127	More Than Just an Oncogene Translocation and a Kinase Inhibitor: Kevin's Story. Journal of Clinical Oncology, 2012, 30, 110-112.	0.8	7
128	Rapidly fatal advanced EGFR -mutated lung cancers and the need for rapid tumor genotyping in clinical practice. Cancer Treatment and Research Communications, 2016, 9, 41-43.	0.7	7
129	ALK inhibitors: plateauing systemic and intracranial activity?. Lancet Oncology, The, 2016, 17, 404-406.	5.1	7
130	Randomized Phase II Study of 3 Months or 2 Years of Adjuvant Afatinib in Patients With Surgically Resected Stage I-III <i>EGFR</i> -Mutant Non–Small-Cell Lung Cancer. JCO Precision Oncology, 2021, 5, 325-332.	1.5	7
131	EGFR-D770>GY and Other Rare EGFR Exon 20 Insertion Mutations with a G770 Equivalence Are Sensitive to Dacomitinib or Afatinib and Responsive to EGFR Exon 20 Insertion Mutant-Active Inhibitors in Preclinical Models and Clinical Scenarios. Cells, 2021, 10, 3561.	1.8	7
132	Successful treatment of epidermal growth factor receptor inhibitor–induced alopecia with doxycycline. JAAD Case Reports, 2015, 1, 289-291.	0.4	6
133	Resistance to ALK inhibitors: Pharmacokinetics, mutations or bypass signaling?. Cell Cycle, 2017, 16, 19-20.	1.3	6
134	Time to SARS oVâ€2 clearance among patients with cancer and COVIDâ€19. Cancer Medicine, 2021, 10, 1545-1549.	1.3	6
135	CCAAT/Enhancer Binding Protein β Is Dispensable for Development of Lung Adenocarcinoma. PLoS ONE, 2015, 10, e0120647.	1.1	6
136	Diabetes Mellitus As The Presenting Feature Of Extrahepatic Cholangiocarcinoma In Situ: Case Report And Review Of Literature. Endocrine Practice, 2004, 10, 417-423.	1.1	5
137	Three-year survival in metastatic non-small cell lung cancer treated with gefitinib. Lung Cancer, 2006, 53, 123-124.	0.9	5
138	Safety of Cupping During Bevacizumab Therapy. Journal of Alternative and Complementary Medicine, 2013, 19, 729-731.	2.1	5
139	Ascending role of next-generation ALK inhibitors. Lancet Oncology, The, 2017, 18, 837-839.	5.1	5
140	Can PD-L1 tumor proportion score be used as the key to unlocking the KEYNOTE studies of pembrolizumab in advanced lung cancer?. Translational Lung Cancer Research, 2019, 8, 715-722.	1.3	5
141	Patterns of Care for Non–Small-Cell Lung Cancer at an Academic Institution Affiliated With a National Cancer Institute–Designated Cancer Center. Journal of Oncology Practice, 2012, 8, 57-62.	2.5	4
142	Abstract 23: Sensitivity ofEGFRexon 20 insertion mutations to EGFR inhibitors is determined by their location within the tyrosine kinase domain of EGFR. , 2012, , .		4
143	Recurrent Infections in Multiple Myeloma. Mayo Clinic Proceedings, 2006, 81, 567-568.	1.4	3
144	To re-treat or not with gefitinib/erlotinib: This is the question for tyrosine kinase inhibitor-responsive lung cancers that progress. Lung Cancer, 2007, 57, 251-252.	0.9	3

#	Article	IF	CITATIONS
145	Response of Intracranial Metastases to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: It May All Depend on <i>EGFR</i> Mutations. Journal of Clinical Oncology, 2008, 26, 686-686.	0.8	3
146	EGFR activating mutations and their association with response to platinum-doublet chemotherapy in Brazilian non-small cell lung cancer patients. Targeted Oncology, 2014, 9, 389-394.	1.7	3
147	Endoluminal contrast for abdomen and pelvis magnetic resonance imaging. Abdominal Radiology, 2016, 41, 1378-1398.	1.0	3
148	P2.06-007 A Phase 1/2 Trial of the Oral EGFR/HER2 Inhibitor AP32788 in Non–Small Cell Lung Cancer (NSCLC). Journal of Thoracic Oncology, 2017, 12, S1072-S1073.	0.5	3
149	Compound Uncommon EGFR Mutations in a Patient with Advanced NSCLC and Durable Response to Sequential EGFR Targeted Therapies. Journal of Thoracic Oncology, 2017, 12, e35-e36.	0.5	3
150	Extensive-Stage Small-Cell Lung Cancer With Sustained Complete Response to Single-Agent Nivolumab and Immune-Related Dermatitis. Clinical Lung Cancer, 2020, 21, e6-e9.	1.1	3
151	EGFR-A763_Y764insFQEA: A unique exon 20 insertion mutation that displays sensitivity to all classes of approved lung cancer EGFR tyrosine kinase inhibitors Journal of Clinical Oncology, 2019, 37, e20593-e20593.	0.8	3
152	Trastuzumab Deruxtecan in Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2022, 386, 1769-1771.	13.9	3
153	Morphologic characteristics of pulmonary adenocarcinomas manifesting as pure ground-glass nodules on CT. Journal of Thoracic Disease, 2017, 9, E1148-E1150.	0.6	2
154	A Position +5 Intronic Mutation in the α-Spectrin Gene Is Associated with Marked Deficiency of α-Spectrin Production in the First Reported Cases of Hereditary Pyropoikilocytosis Blood, 2004, 104, 576-576.	0.6	2
155	Randomized phase II study of adjuvant afatinib for three months versus two years in patients with resected stage I-III <i>EGFR</i> mutant NSCLC Journal of Clinical Oncology, 2019, 37, 8507-8507.	0.8	2
156	Clinical development and approval of second generation ALK inhibitors for ALK rearranged lung cancer. Translational Lung Cancer Research, 2014, 3, 373-5.	1.3	2
157	Moving the mountain in advanced non-small-cell lung cancer: evolving immunotherapies for a dire disease. Translational Cancer Research, 2017, 6, S151-S157.	0.4	2
158	Adequacy of Pleural Fluid Cytology and Pleural Biopsies for Multiple Tumor Genotyping Techniques in Non-small Cell Lung Cancer. Chest, 2014, 146, 609A.	0.4	1
159	Moving more potent and less toxic options to the frontline in the management of advanced lung cancer. Journal of Thoracic Disease, 2017, 9, 2812-2818.	0.6	1
160	Complete and Sustained Response of Brain Metastases to Programmed Death 1 Antibody Monotherapy in Treatment-naive Programmed Death Ligand 1–Positive Lung Cancer. Journal of Thoracic Oncology, 2019, 14, e34-e36.	0.5	1
161	Effect of performance status on survival with pembrolizumab monotherapy in advanced non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2020, 38, 9533-9533.	0.8	1
162	Time to COVID-19 RT-PCR clearance among patients with cancer Journal of Clinical Oncology, 2020, 38, 49-49.	0.8	1

#	Article	IF	CITATIONS
163	A real-world study of patient characteristics and clinical outcomes in <i>EGFR</i> -mutated lung cancer treated with first-line osimertinib Journal of Clinical Oncology, 2022, 40, e21033-e21033.	0.8	1
164	Modern Treatment of Lung Cancer. Journal of Clinical Oncology, 2005, 23, 7740-7742.	0.8	0
165	Hyperglycemia and biliary tract adenocarcinoma Journal of Gastroenterology and Hepatology (Australia), 2006, 21, 484-485.	1.4	0
166	5-Azacytidine treatment of the patient with ATMDS. European Journal of Haematology, 2006, 76, 453-453.	1.1	0
167	Gefitinib plus docetaxel in non-small-cell lung cancer. Lancet, The, 2009, 373, 541.	6.3	0
168	KRAS Mutation Analysis Helps to Differentiate Between Pulmonary Metastasis from Colon Adenocarcinoma In Situ and Primary Lung Adenocarcinoma. Journal of Thoracic Oncology, 2011, 6, 220-222.	0.5	0
169	Comprehensive Genomic Profiling Differentiates Metachronous Primary Small-Cell Lung Cancer From Late Recurrence. Clinical Lung Cancer, 2016, 17, e169-e172.	1.1	Ο
170	Thymic carcinoma with brain metastases: A rare presentation of a rare malignancy. Cancer Treatment Communications, 2016, 7, 21-22.	0.4	0
171	Updated Correlation of 22C3-PD-L1 ≥50% Expression with Driver Oncogene Mutations and Response to Pembrolizumab in the Kinase Inhibitor–Resistant Setting. Journal of Thoracic Oncology, 2018, 13, e81-e83.	0.5	Ο
172	Authors' Response. Journal of Thoracic Oncology, 2018, 13, e237.	0.5	0
173	Differential Pattern of Resistance and Sensitivity to Different Classes of MET Inhibitors for MET-Amplified Tumors With MET-D1228X or MET-Y1230X Mutations. JTO Clinical and Research Reports, 2021, 2, 100133.	0.6	Ο
174	A Distal Single Nucleotide Polymorphism Disrupts Development-Dependent Long-Range Transcriptional Regulation of the PU.1 Gene through the Chromatin-Remodeling Protein SATB1 in Acute Myeloid Leukemia Blood, 2007, 110, 3175-3175.	0.6	0
175	Abstract 1784: Erlotinib at a dose of 25 mg daily for non-small cell lung cancers withEGFRmutations. , 2010, , .		Ο
176	Abstract 4036: Frequent downregulation of the transcription factor Foxa2 in lung cancer through epigenetic silencing. , 2012, , .		0
177	Abstract 4445: Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK translocated lung cancer , 2013, , .		Ο
178	Abstract 1196: Characterization of ALK splicing isoforms in EML4-ALK-translocated lung cancer , 2013, , .		0
179	PD-1 antibody pembrolizumab administered at non-standard frequency in non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2019, 37, e20617-e20617.	0.8	0
180	Comparison of outcomes with pembrolizumab monotherapy (P) versus combination with chemotherapy (P+C) in advanced non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2020, 38, e21579-e21579.	0.8	0

#	Article	IF	CITATIONS
181	In search of goldilocks: the quest to optimize combination drug strategies for the management of advanced stage non-small-cell lung cancer. Translational Cancer Research, 2020, 9, 1311-1318.	0.4	0