David Peter Siderovski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2724591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999, 397, 441-446.	27.8	3,697
2	Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN. Cell, 1998, 95, 29-39.	28.9	2,269
3	Profound block in thymocyte development in mice lacking p56lck. Nature, 1992, 357, 161-164.	27.8	959
4	5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes and Development, 1997, 11, 3306-3318.	5.9	474
5	G-protein signaling: back to the future. Cellular and Molecular Life Sciences, 2005, 62, 551-577.	5.4	416
6	The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. International Journal of Biological Sciences, 2005, 1, 51-66.	6.4	369
7	Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nature Medicine, 2003, 9, 1506-1512.	30.7	360
8	Regulators of G-Protein signalling as new central nervous system drug targets. Nature Reviews Drug Discovery, 2002, 1, 187-197.	46.4	351
9	A Seven-Transmembrane RGS Protein That Modulates Plant Cell Proliferation. Science, 2003, 301, 1728-1731.	12.6	300
10	Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nature Cell Biology, 2002, 4, 621-625.	10.3	288
11	Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity. Journal of Neuroscience, 1998, 18, 7178-7188.	3.6	284
12	Translation of Polarity Cues into Asymmetric Spindle Positioning in Caenorhabditis elegans Embryos. Science, 2003, 300, 1957-1961.	12.6	277
13	A G protein subunit-like domain shared between RGS11 and other RGS proteins specifies binding to GÂ5 subunits. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13307-13312.	7.1	265
14	Regulation of T cell activation, anxiety, and male aggression by RGS2. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12272-12277.	7.1	264
15	Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature, 2002, 416, 878-881.	27.8	252
16	The Mitochondrial Proteins NLRX1 and TUFM Form a Complex that Regulates Type I Interferon and Autophagy. Immunity, 2012, 36, 933-946.	14.3	241
17	The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Current Biology, 2000, 10, 1459-1462.	3.9	232
18	Structural and Evolutionary Division of Phosphotyrosine Binding (PTB) Domains. Journal of Molecular Biology, 2005, 345, 1-20.	4.2	225

#	Article	IF	CITATIONS
19	Molecular cloning ofLSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Research, 1995, 23, 2127-2136.	14.5	219
20	A new family of regulators of G-protein-coupled receptors?. Current Biology, 1996, 6, 211-212.	3.9	211
21	RGS12 and RGS14 GoLoco Motifs Are GαiInteraction Sites with Guanine Nucleotide Dissociation Inhibitor Activity. Journal of Biological Chemistry, 2001, 276, 29275-29281.	3.4	207
22	Regulators of G-Protein Signaling and Their Gα Substrates: Promises and Challenges in Their Use as Drug Discovery Targets. Pharmacological Reviews, 2011, 63, 728-749.	16.0	205
23	A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO Journal, 2002, 21, 1315-1326.	7.8	198
24	Return of the GDI: The GoLoco Motif in Cell Division. Annual Review of Biochemistry, 2004, 73, 925-951.	11.1	197
25	GTPase acceleration as the rate-limiting step in <i>Arabidopsis</i> G protein-coupled sugar signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17317-17322.	7.1	195
26	GTPase Activating Specificity of RGS12 and Binding Specificity of an Alternatively Spliced PDZ (PSD-95/Dlg/ZO-1) Domain. Journal of Biological Chemistry, 1998, 273, 17749-17755.	3.4	194
27	Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nature Structural Biology, 2002, 9, 468-475.	9.7	190
28	RIC-8 Is Required for GPR-1/2-Dependent Gα Function during Asymmetric Division of C. elegans Embryos. Cell, 2004, 119, 219-230.	28.9	186
29	Structural diversity in the RGS domain and its interaction with heterotrimeric G protein α-subunits. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6457-6462.	7.1	174
30	The GoLoco motif: a Gαi/o binding motif and potential guanine-nucleotide exchange factor. Trends in Biochemical Sciences, 1999, 24, 340-341.	7.5	171
31	Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. Journal of Clinical Investigation, 2009, 119, 408-20.	8.2	171
32	Leukemia-Associated Rho Guanine Nucleotide Exchange Factor Promotes Gαq-Coupled Activation of RhoA. Molecular and Cellular Biology, 2002, 22, 4053-4061.	2.3	165
33	LGN regulates mitotic spindle orientation during epithelial morphogenesis. Journal of Cell Biology, 2010, 189, 275-288.	5.2	165
34	Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha i subunits. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14364-14369.	7.1	161
35	HIV-1 Tat Directly Interacts with the Interferon-Induced, Double-Stranded RNA-Dependent Kinase, PKR. Virology, 1995, 213, 413-424.	2.4	156
36	Rgs1 regulates multiple Cα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO Journal, 2007, 26, 690-700.	7.8	151

#	Article	IF	CITATIONS
37	Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature, 2000, 408, 723-727.	27.8	142
38	A Human Gene Encoding a Putative Basic Helix–Loop–Helix Phosphoprotein Whose mRNA Increases Rapidly in Cycloheximide-Treated Blood Mononuclear Cells. DNA and Cell Biology, 1994, 13, 125-147.	1.9	125
39	Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina. Neuron, 2005, 48, 539-545.	8.1	123
40	Receptor-Mediated Activation of Heterotrimeric G-Proteins: Current Structural Insights. Molecular Pharmacology, 2007, 72, 219-230.	2.3	123
41	Fidelity of G protein Â-subunit association by the G protein Â-subunit-like domains of RGS6, RGS7, and RGS11. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96,	7.1	117
42	DEP, dishevelled/EGL-10/pleckstrin-related domain; DH, dbl-homology domain; GAP, guanosine triphosphatase-activating protein; GEF, guanine nucleotide exchange factor; GGL, G-gamma-like; GIRK, G-protein-gated inwardly rectifying potassium channel; GPCR, G-protein-coupled receptor; G protein, guanine nucleotide binding protein; GTPase, guanosine triphosphatase: mAChR, muscarinic	4.4	117
43	Acetylcholine receptor: MAPK, Biochemical Pharmacology, 2001, 61, 1329-1337 Receptor selective Effects of Endogenous RCS3 and RCS5 to Regulate Mitogen-activated Protein Kinase Activation in Rat Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 24949-24958.	3.4	115
44	Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nature Cell Biology, 2005, 7, 1091-1098.	10.3	113
45	PB1 Domain Interaction of p62/Sequestosome 1 and MEKK3 Regulates NF-κB Activation. Journal of Biological Chemistry, 2010, 285, 2077-2089.	3.4	107
46	Molecular Cloning and Expression Analysis of RatRgs12andRgs14. Biochemical and Biophysical Research Communications, 1997, 233, 770-777.	2.1	106
47	Whither Goest the RGS Proteins?. Critical Reviews in Biochemistry and Molecular Biology, 1999, 34, 215-251.	5.2	102
48	Crystal structure of the multifunctional Gβ5–RGS9 complex. Nature Structural and Molecular Biology, 2008, 15, 155-162.	8.2	97
49	Chronic Olanzapine Treatment Causes Differential Expression of Genes in Frontal Cortex of Rats as Revealed by DNA Microarray Technique. Neuropsychopharmacology, 2006, 31, 1888-1899.	5.4	96
50	Clathrin Adaptor AP2 Regulates Thrombin Receptor Constitutive Internalization and Endothelial Cell Resensitization. Molecular and Cellular Biology, 2006, 26, 3231-3242.	2.3	93
51	Activation of Phospholipase C-Îμ by Heterotrimeric G Protein βγ-Subunits. Journal of Biological Chemistry, 2001, 276, 48257-48261.	3.4	90
52	Structure-based Protocol for Identifying Mutations that Enhance Protein–Protein Binding Affinities. Journal of Molecular Biology, 2007, 371, 1392-1404.	4.2	90
53	Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7066-7071.	7.1	89
54	Comment on "A G Protein–Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid". Science, 2007, 318, 914-914.	12.6	85

#	Article	IF	CITATIONS
55	A Set of Human Putative Lymphocyte G ₀ /G ₁ Switch Genes Includes Genes Homologous to Rodent Cytokine and Zinc Finger Protein-Encoding Genes. DNA and Cell Biology, 1990, 9, 579-587.	1.9	83
56	Quantitative Analysis of the Effect of Phosphoinositide Interactions on the Function of Dbl Family Proteins. Journal of Biological Chemistry, 2001, 276, 45868-45875.	3.4	83
57	Exome Sequencing in 53 Sporadic Cases of Schizophrenia Identifies 18 Putative Candidate Genes. PLoS ONE, 2014, 9, e112745.	2.5	79
58	Cortical localization of the G $\hat{l}\pm$ protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division. Development (Cambridge), 2005, 132, 4449-4459.	2.5	78
59	Selective role for RCS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation. EMBO Journal, 2007, 26, 2029-2040.	7.8	78
60	β ₂ -Adrenoceptor agonist-induced RGS2 expression is a genomic mechanism of bronchoprotection that is enhanced by glucocorticoids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19713-19718.	7.1	76
61	Structure of Cαi1 Bound to a GDP-Selective Peptide Provides Insight into Guanine Nucleotide Exchange. Structure, 2005, 13, 1069-1080.	3.3	74
62	Gβγ Isoforms Selectively Rescue Plasma Membrane Localization and Palmitoylation of Mutant Gαs and Gαq. Journal of Biological Chemistry, 2001, 276, 23945-23953.	3.4	73
63	Cloning of Human Lymphocyte-Specific Interferon Regulatory Factor (hLSIRF/hIRF4) and Mapping of the Gene to 6p23–p25. Genomics, 1996, 37, 229-233.	2.9	71
64	Telomerase-Associated Protein TEP1 Is Not Essential for Telomerase Activity or Telomere Length Maintenance In Vivo. Molecular and Cellular Biology, 2000, 20, 8178-8184.	2.3	69
65	Selective Regulation of N-Type Ca Channels by Different Combinations of G-Protein β/γ Subunits and RGS Proteins. Journal of Neuroscience, 2000, 20, 7143-7148.	3.6	62
66	Structural Determinants of G-protein α Subunit Selectivity by Regulator of G-protein Signaling 2 (RGS2). Journal of Biological Chemistry, 2009, 284, 19402-19411.	3.4	62
67	Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif. Biochemical Journal, 2004, 378, 801-808.	3.7	61
68	D2 dopamine receptor activation of potassium channels is selectively decoupled by Cαi-specific GoLoco motif peptides. Journal of Neurochemistry, 2005, 92, 1408-1418.	3.9	61
69	Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 330-346.	3.4	60
70	RGS14 Is a Mitotic Spindle Protein Essential from the First Division of the Mammalian Zygote. Developmental Cell, 2004, 7, 763-769.	7.0	59
71	Gα12/13- and Rho-Dependent Activation of Phospholipase C-ϵ by Lysophosphatidic Acid and Thrombin Receptors. Molecular Pharmacology, 2006, 69, 2068-2075.	2.3	52
72	G protein signaling in the parasite Entamoeba histolytica. Experimental and Molecular Medicine, 2013, 45, e15-e15.	7.7	52

DAVID PETER SIDEROVSKI

#	Article	IF	CITATIONS
73	High-Affinity Immobilization of Proteins Using Biotin- and CST-Based Coupling Strategies. Methods in Molecular Biology, 2010, 627, 75-90.	0.9	50
74	Functional relevance of the disulfide-linked complex of the N-terminal PDZ domain of InaD with NorpA. EMBO Journal, 2001, 20, 4414-4422.	7.8	49
75	The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Gα-interaction face. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1213-1220.	2.3	48
76	Cloning of a retinally abundant regulator of G-protein signaling (RGS-r/RGS16): genomic structure and chromosomal localization of the human gene. Gene, 1998, 206, 247-253.	2.2	47
77	A direct fluorescence-based assay for RGS domain GTPase accelerating activity. Analytical Biochemistry, 2005, 340, 341-351.	2.4	47
78	Dynamic Regulation of Mammalian Numb by G Protein-coupled Receptors and Protein Kinase C Activation: Structural Determinants of Numb Association with the Cortical Membrane. Molecular Biology of the Cell, 2006, 17, 4142-4155.	2.1	47
79	The GÂÂ DIMER as a NOVEL SOURCE of SELECTIVITY in G-Protein Signaling: GGL-ing AT CONVENTION. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 200-214.	3.4	46
80	Computational Design of the Sequence and Structure of a Protein-Binding Peptide. Journal of the American Chemical Society, 2011, 133, 4190-4192.	13.7	44
81	Minimal Determinants for Binding Activated Gα from the Structure of a Gαi1â^'Peptide Dimerâ€,‡. Biochemistry, 2006, 45, 11390-11400.	2.5	42
82	A Capture Coupling Method for the Covalent Immobilization of Hexahistidine Tagged Proteins for Surface Plasmon Resonance. Methods in Molecular Biology, 2010, 627, 91-100.	0.9	42
83	Gα selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 254-264.	4.1	41
84	RGS12 Interacts with the SNARE-binding Region of the Cav2.2 Calcium Channel. Journal of Biological Chemistry, 2005, 280, 1521-1528.	3.4	41
85	Structural basis for nucleotide exchange on GÂi subunits and receptor coupling specificity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2001-2006.	7.1	41
86	A Point Mutation to Cαi Selectively Blocks GoLoco Motif Binding. Journal of Biological Chemistry, 2008, 283, 36698-36710.	3.4	41
87	Integrating energy calculations with functional assays to decipher the specificity of G protein–RGS protein interactions. Nature Structural and Molecular Biology, 2011, 18, 846-853.	8.2	41
88	Induction of Regulator of G-Protein Signaling 2 Expression by Long-Acting <i>β</i> ₂ -Adrenoceptor Agonists and Glucocorticoids in Human Airway Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 12-24.	2.5	40
89	Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector. PLoS ONE, 2009, 4, e4884.	2.5	40
90	The effect of RGS12 on PDGFβ receptor signalling to p42/p44 mitogen activated protein kinase in mammalian cells. Cellular Signalling, 2006, 18, 971-981.	3.6	39

#	Article	IF	CITATIONS
91	Gβ Association and Effector Interaction Selectivities of the Divergent Gγ Subunit Gγ13. Journal of Biological Chemistry, 2001, 276, 49267-49274.	3.4	36
92	Established and Emerging Fluorescence-Based Assays for G-Protein Function: Ras-Superfamily GTPases. Combinatorial Chemistry and High Throughput Screening, 2003, 6, 409-418.	1.1	36
93	Preclinical Testing of Nalfurafine as an Opioid-sparing Adjuvant that Potentiates Analgesia by the Mu Opioid Receptor-targeting Agonist Morphine. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 487-499.	2.5	35
94	Cooperative interaction between the DNA-binding domains of PU.1 and IRF4. Journal of Molecular Biology, 1998, 279, 1075-1083.	4.2	34
95	The GoLoco Motif: Heralding a New Tango Between G Protein Signaling and Cell Division. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 88-100.	3.4	34
96	Purification and In Vitro Functional Analysis of the Arabidopsis thaliana Regulator of G-Protein Signaling-1. Methods in Enzymology, 2004, 389, 320-338.	1.0	33
97	RGS14 is a Microtubule-Associated Protein. Cell Cycle, 2005, 4, 953-960.	2.6	33
98	A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis. PLoS Pathogens, 2012, 8, e1002553.	4.7	32
99	Inhibition of Dopamine Transporter Activity by G Protein βγ Subunits. PLoS ONE, 2013, 8, e59788.	2.5	31
100	Covalent immobilization of histidine-tagged proteins for surface plasmon resonance. Analytical Biochemistry, 2006, 353, 147-149.	2.4	30
101	Two Gα i1 Rate-Modifying Mutations Act in Concert to Allow Receptor-Independent, Steady-State Measurements of RGS Protein Activity. Journal of Biomolecular Screening, 2009, 14, 1195-1206.	2.6	30
102	A Non-Canonical Function of Gβ as a Subunit of E3 Ligase in Targeting GRK2ÂUbiquitylation. Molecular Cell, 2015, 58, 794-803.	9.7	30
103	G Protein Signaling Modulator-3 Inhibits the Inflammasome Activity of NLRP3. Journal of Biological Chemistry, 2014, 289, 33245-33257.	3.4	29
104	Established and Emerging Fluorescence-Based Assays for G-Protein Function: Heterotrimeric G-Protein Alpha Subunits and Regulator of G-Protein Signaling (RGS) Proteins. Combinatorial Chemistry and High Throughput Screening, 2003, 6, 399-407.	1.1	29
105	A High Throughput Fluorescence Polarization Assay for Inhibitors of the GoLoco Motif/G-alpha Interaction. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 396-409.	1.1	28
106	Regulator of G-protein Signaling-21 (RGS21) Is an Inhibitor of Bitter Gustatory Signaling Found in Lingual and Airway Epithelia. Journal of Biological Chemistry, 2012, 287, 41706-41719.	3.4	28
107	Molecular Cloning of Regulators of G-Protein Signaling Family Members and Characterization of Binding Specificity of RGS 12 PDZ Domain. Methods in Enzymology, 2002, 344, 740-761.	1.0	26
108	Application of RGS Box Proteins to Evaluate G-Protein Selectivity in Receptor-Promoted Signaling. Methods in Enzymology, 2004, 389, 71-88.	1.0	26

#	Article	IF	CITATIONS
109	Novel behavioral assays of spontaneous and precipitated THC withdrawal in mice. Drug and Alcohol Dependence, 2018, 191, 14-24.	3.2	26
110	Heterotrimeric G-protein Signaling Is Critical to Pathogenic Processes in Entamoeba histolytica. PLoS Pathogens, 2012, 8, e1003040.	4.7	25
111	Single Nucleotide Polymorphisms in Chemosensory Pathway Genes GNB3, TAS2R19, and TAS2R38 Are Associated with Chronic Rhinosinusitis. International Archives of Allergy and Immunology, 2019, 180, 72-78.	2.1	25
112	C-protein signaling modulator-3, a gene linked to autoimmune diseases, regulates monocyte function and its deficiency protects from inflammatory arthritis. Molecular Immunology, 2013, 54, 193-198.	2.2	24
113	G protein-coupled receptor kinase-3-deficient mice exhibit WHIM syndrome features and attenuated inflammatory responses. Journal of Leukocyte Biology, 2013, 94, 1243-1251.	3.3	24
114	Protective Roles for RGS2 in a Mouse Model of House Dust Mite-Induced Airway Inflammation. PLoS ONE, 2017, 12, e0170269.	2.5	24
115	Modulating platelet reactivity through control of RGS18 availability. Blood, 2015, 126, 2611-2620.	1.4	23
116	C-protein alpha subunit interaction and guanine nucleotide dissociation inhibitor activity of the dual GoLoco motif protein PCP-2 (Purkinje cell protein-2). Cellular Signalling, 2006, 18, 1226-1234.	3.6	22
117	A sweet cycle for Arabidopsis G-proteins. Plant Signaling and Behavior, 2008, 3, 1067-1076.	2.4	22
118	Helix Dipole Movement and Conformational Variability Contribute to Allosteric GDP Release in Gαi Subunits,. Biochemistry, 2009, 48, 2630-2642.	2.5	21
119	Fluorescence-Based Assays for RGS Box Function. Methods in Enzymology, 2004, 389, 56-71.	1.0	19
120	A bifunctional Gαi/Gαsmodulatory peptide that attenuates adenylyl cyclase activity. FEBS Letters, 2005, 579, 5746-5750.	2.8	19
121	Differential G-alpha interaction capacities of the GoLoco motifs in Rap GTPase activating proteins. Cellular Signalling, 2007, 19, 428-438.	3.6	19
122	Role of the pleckstrin homology domain in intersectin-L Dbl homology domain activation of Cdc42 and signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1640, 61-68.	4.1	18
123	Structural Determinants of Affinity Enhancement between GoLoco Motifs and G-Protein $\hat{I}\pm$ Subunit Mutants. Journal of Biological Chemistry, 2011, 286, 3351-3358.	3.4	17
124	Chemerin-activated functions of CMKLR1 are regulated by G protein-coupled receptor kinase 6 (GRK6) and β-arrestin 2 in inflammatory macrophages. Molecular Immunology, 2019, 106, 12-21.	2.2	17
125	The R6A-1 peptide binds to switch II of Cαi1 but is not a GDP-dissociation inhibitor. Biochemical and Biophysical Research Communications, 2006, 339, 1107-1112.	2.1	16
126	Unique Structural and Nucleotide Exchange Features of the Rho1 GTPase of Entamoeba histolytica. Journal of Biological Chemistry, 2011, 286, 39236-39246.	3.4	16

#	Article	IF	CITATIONS
127	<i>Entamoeba histolytica</i> Rho1 Regulates Actin Polymerization through a Divergent, Diaphanous-Related Formin. Biochemistry, 2012, 51, 8791-8801.	2.5	16
128	Random mutagenesis of the human immunodeficiency virus type-1frans-activator of transcription (HIV-1 Tat). Nucleic Acids Research, 1992, 20, 5311-5320.	14.5	15
129	Structural Determinants Underlying the Temperature-sensitive Nature of a Gα Mutant in Asymmetric Cell Division of Caenorhabditis elegans. Journal of Biological Chemistry, 2008, 283, 21550-21558.	3.4	15
130	G-protein Signaling Modulator-3 Regulates Heterotrimeric G-protein Dynamics through Dual Association with Gl² and Gl̂±i Protein Subunits. Journal of Biological Chemistry, 2012, 287, 4863-4874.	3.4	15
131	Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants. Journal of Psychopharmacology, 2018, 32, 191-203.	4.0	15
132	Role of RGS12 in the differential regulation of kappa opioid receptor-dependent signaling and behavior. Neuropsychopharmacology, 2019, 44, 1728-1741.	5.4	15
133	Potential for Kappa-Opioid Receptor Agonists to Engineer Nonaddictive Analgesics: A Narrative Review. Anesthesia and Analgesia, 2021, 132, 406-419.	2.2	15
134	Differential expression of regulator of G-protein signaling R12 subfamily members during mouse development. Developmental Dynamics, 2005, 234, 438-444.	1.8	14
135	RNA interference screen for RGS protein specificity at muscarinic and protease-activated receptors reveals bidirectional modulation of signaling. American Journal of Physiology - Cell Physiology, 2010, 299, C654-C664.	4.6	14
136	Structural Determinants of Ubiquitin Conjugation in Entamoeba histolytica. Journal of Biological Chemistry, 2013, 288, 2290-2302.	3.4	14
137	Regulation of Protease-activated Receptor 1 Signaling by the Adaptor Protein Complex 2 and R4 Subfamily of Regulator of G Protein Signaling Proteins. Journal of Biological Chemistry, 2014, 289, 1580-1591.	3.4	13
138	G protein signaling modulator-3: a leukocyte regulator of inflammation in health and disease. American Journal of Clinical and Experimental Immunology, 2014, 3, 97-106.	0.2	13
139	State-Selective Binding Peptides for Heterotrimeric G-Protein Subunits:Novel Tools for Investigating G-Protein Signaling Dynamics. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 370-381.	1.1	12
140	RAMHA: A PC-based Monte-Carlo simulation of random saturation mutagenesis. Computers in Biology and Medicine, 1993, 23, 463-474.	7.0	10
141	Purification and In Vitro Functional Analyses of RGS12 and RGS14 GoLoco Motif Peptides. Methods in Enzymology, 2004, 390, 419-436.	1.0	10
142	A role for Regulator of G protein Signaling-12 (RGS12) in the balance between myoblast proliferation and differentiation. PLoS ONE, 2019, 14, e0216167.	2.5	10
143	Regulation of the Subcellular Localization of the G-protein Subunit Regulator GPSM3 through Direct Association with 14-3-3 Protein. Journal of Biological Chemistry, 2012, 287, 31270-31279.	3.4	8
144	Evaluating Modulators of "Regulator of G-protein Signaling―(RGS) Proteins. Current Protocols in Pharmacology, 2012, 56, 2.8.1-2.8.15.	4.0	8

#	Article	IF	CITATIONS
145	<i>Entamoeba histolytica</i> RacC Selectively Engages p21-Activated Kinase Effectors. Biochemistry, 2015, 54, 404-412.	2.5	8
146	Assays of Complex Formation between RGS Protein GÎ ³ Subunit-like Domains and GÎ ² Subunits. Methods in Enzymology, 2002, 344, 702-723.	1.0	7
147	Structural Determinants of RGS-RhoGEF Signaling Critical to Entamoeba histolytica Pathogenesis. Structure, 2013, 21, 65-75.	3.3	7
148	RCS21, a regulator of taste and mucociliary clearance?. Laryngoscope, 2014, 124, E56-63.	2.0	7
149	Genetic variations in GPSM3 associated with protection from rheumatoid arthritis affect its transcript abundance. Genes and Immunity, 2016, 17, 139-147.	4.1	7
150	Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein Signaling-21 (RGS21). Chemical Senses, 2018, 43, 367-378.	2.0	7
151	Reduction of GPSM3 expression akin to the arthritis-protective SNP rs204989 differentially affects migration in a neutrophil model. Genes and Immunity, 2016, 17, 321-327.	4.1	5
152	Analysis of Interactions between Regulator of G-Protein Signaling-14 and Microtubules. Methods in Enzymology, 2004, 390, 240-258.	1.0	4
153	Four single nucleotide polymorphisms in genes involved in neuronal signaling are associated with opioid use disorder in West Virginia. Journal of Opioid Management, 2019, 15, 103-109.	0.5	4
154	Telomerase-Associated Protein TEP1 Is Not Essential for Telomerase Activity or Telomere Length Maintenance In Vivo. Molecular and Cellular Biology, 2000, 20, 8178-8184.	2.3	4
155	The RGS Protein Superfamily. , 2003, , 631-638.		3
156	Genetic deletion of <i>Rgs12</i> in mice affects serotonin transporter expression and function <i>in vivo</i> and <i>ex vivo</i> . Journal of Psychopharmacology, 2020, 34, 1393-1407.	4.0	2
157	The stability of tastant detection by mouse lingual chemosensory tissue requires Regulator of G protein Signaling-21 (RGS21). Chemical Senses, 2021, 46, .	2.0	2
158	A Homogeneous Method to Measure Nucleotide Exchange by α-Subunits of Heterotrimeric G-Proteins Using Fluorescence Polarization. Assay and Drug Development Technologies, 2010, 8, 621-624.	1.2	1
159	Self-activating G protein α subunits engage seven-transmembrane regulator of G protein signaling (RGS) proteins and a Rho guanine nucleotide exchange factor effector in the amoeba Naegleria fowleri. Journal of Biological Chemistry, 2022, 298, 102167.	3.4	1
160	Meet The Guest Editors. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 468-468.	1.1	0
161	Editorial [Hot Topic: GPCR High Throughput Screening (Part 1) (Guest Editors: David P. Siderovski and) Tj ETQq1	1 0.78431 1.1	.4 rgBT /Ove

162 The Superfamily of "Regulator of G-Protein Signaling―(RGS) Proteins. , 2010, , 1683-1703.

#	Article	IF	CITATIONS
163	Rgs2. The AFCS-nature Molecule Pages, 0, , .	0.2	0
164	Rgs11. The AFCS-nature Molecule Pages, 0, , .	0.2	0
165	Rgs6. The AFCS-nature Molecule Pages, 0, , .	0.2	0
166	Structural studies of RGS9/GÎ ² 5. FASEB Journal, 2008, 22, 539.2.	0.5	0
167	GPSM3 as a Therapeutic Target for Rheumatoid Arthritis. FASEB Journal, 2015, 29, .	0.5	0
168	RGS Protein Family. , 2018, , 4657-4663.		0
169	The Biased Kappa Opioid Receptor Agonist Nalfurafine Reduces the Reinforcing Properties of Oxycodone and Enhances Oxycodoneâ€Induced Spinal Antiâ€Nociception. FASEB Journal, 2020, 34, 1-1.	0.5	0