

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/272440/publications.pdf Version: 2024-02-01

WENRO

#	Article	IF	CITATIONS
1	Bacterial Effector Activates Jasmonate Signaling by Directly Targeting JAZ Transcriptional Repressors. PLoS Pathogens, 2013, 9, e1003715.	4.7	209
2	<i>Phytophthora</i> effector targets a novel component of small RNA pathway in plants to promote infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5850-5855.	7.1	173
3	An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nature Communications, 2018, 9, 1718.	12.8	142
4	Phytohormone pathways as targets of pathogens to facilitate infection. Plant Molecular Biology, 2016, 91, 713-725.	3.9	135
5	Pseudomonas syringae Type III Effector HopZ1 Targets a Host Enzyme to Suppress Isoflavone Biosynthesis and Promote Infection in Soybean. Cell Host and Microbe, 2011, 9, 177-186.	11.0	99
6	YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity. Microbiology and Molecular Biology Reviews, 2016, 80, 1011-1027.	6.6	88
7	Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biology, 2021, 19, e3001136.	5.6	69
8	Molecular Soybean-Pathogen Interactions. Annual Review of Phytopathology, 2016, 54, 443-468.	7.8	67
9	The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nature Communications, 2018, 9, 5080.	12.8	60
10	Mechanism of host substrate acetylation by a YopJ family effector. Nature Plants, 2017, 3, 17115.	9.3	50
11	Exchange of Small Regulatory RNAs between Plants and Their Pests. Plant Physiology, 2020, 182, 51-62.	4.8	46
12	The WY domain in the Phytophthora effector PSR 1 is required for infection and RNA silencing suppression activity. New Phytologist, 2019, 223, 839-852.	7.3	31
13	Sec-Delivered Effector 1 (SDE1) of â€~ <i>Candidatus</i> Liberibacter asiaticus' Promotes Citrus Huanglongbing. Molecular Plant-Microbe Interactions, 2020, 33, 1394-1404.	2.6	27
14	Filamentous pathogen effectors interfering with small RNA silencing in plant hosts. Current Opinion in Microbiology, 2016, 32, 1-6.	5.1	26
15	Natural Host-Induced Gene Silencing Offers New Opportunities to Engineer DiseaseÂResistance. Trends in Microbiology, 2020, 28, 109-117.	7.7	25
16	Catalytic domain of the diversified <i>Pseudomonas syringae</i> type III effector HopZ1 determines the allelic specificity in plant hosts. Molecular Microbiology, 2010, 76, 437-455.	2.5	18
17	Small RNAs regulate plant responses to filamentous pathogens. Seminars in Cell and Developmental Biology, 2016, 56, 190-200.	5.0	17
18	Transcriptome Profiling of â€~ <i>Candidatus</i> Liberibacter asiaticus' in Citrus and Psyllids. Phytopathology, 2022, 112, 116-130.	2.2	10

#	Article	IF	CITATIONS
19	From Pathogen Recognition to Plant Immunity: BIK1 cROSses the Divide. Cell Host and Microbe, 2014, 15, 253-254.	11.0	6