
Daniel Golparian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2724305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Is Neisseria gonorrhoeae Initiating a Future Era of Untreatable Gonorrhea?: Detailed Characterization of the First Strain with High-Level Resistance to Ceftriaxone. Antimicrobial Agents and Chemotherapy, 2011, 55, 3538-3545.	1.4	600
2	High-Level Cefixime- and Ceftriaxone-Resistant Neisseria gonorrhoeae in France: Novel <i>penA</i> Mosaic Allele in a Successful International Clone Causes Treatment Failure. Antimicrobial Agents and Chemotherapy, 2012, 56, 1273-1280.	1.4	546
3	Failure of Dual Antimicrobial Therapy in Treatment of Gonorrhea. New England Journal of Medicine, 2016, 374, 2504-2506.	13.9	283
4	Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Eurosurveillance, 2018, 23, .	3.9	255
5	The novel 2016 WHO <i>Neisseria gonorrhoeae</i> reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. Journal of Antimicrobial Chemotherapy, 2016, 71, 3096-3108.	1.3	246
6	Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infectious Diseases, The, 2018, 18, 758-768.	4.6	164
7	Whole-genome sequences of <i>Chlamydia trachomatis</i> directly from clinical samples without culture. Genome Research, 2013, 23, 855-866.	2.4	115
8	Phenotypic and genetic characterization of the first two cases of extended-spectrum-cephalosporin-resistant Neisseria gonorrhoeae infection in South Africa and association with cefixime treatment failure. Journal of Antimicrobial Chemotherapy, 2013, 68, 1267-1270.	1.3	108
9	Importance of Multidrug Efflux Pumps in the Antimicrobial Resistance Property of Clinical Multidrug-Resistant Isolates of Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2014, 58, 3556-3559.	1.4	96
10	The impact of antimicrobials on gonococcal evolution. Nature Microbiology, 2019, 4, 1941-1950.	5.9	91
11	<i>In Vitro</i> Activity of the New Fluoroketolide Solithromycin (CEM-101) against a Large Collection of Clinical Neisseria gonorrhoeae Isolates and International Reference Strains, Including Those with High-Level Antimicrobial Resistance: Potential Treatment Option for Gonorrhea?. Antimicrobial Agents and Chemotherapy, 2012, 56, 2739-2742.	1.4	90
12	WGS analysis and molecular resistance mechanisms of azithromycin-resistant (MIC >2) Tj ETQq0 0 0 rgBT /Ov Chemotherapy, 2016, 71, 3109-3116.	verlock 10 1.3	Tf 50 307 To 81
13	Emergence, spread and characteristics of Neisseria gonorrhoeae isolates with in vitro decreased susceptibility and resistance to extended-spectrum cephalosporins in Sweden. Sexually Transmitted Infections, 2010, 86, 454-460.	0.8	80
14	Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. Eurosurveillance, 2018, 23, .	3.9	80
15	A Novel Mechanism of High-Level, Broad-Spectrum Antibiotic Resistance Caused by a Single Base Pair Change in Neisseria gonorrhoeae. MBio, 2011, 2, .	1.8	77
16	Neisseria gonorrhoeae Strain with High-Level Resistance to Spectinomycin Due to a Novel Resistance Mechanism (Mutated Ribosomal Protein S5) Verified in Norway. Antimicrobial Agents and Chemotherapy, 2013, 57, 1057-1061.	1.4	74
17	Clinical and analytical evaluation of the new Aptima Mycoplasma genitalium assay, with data on M.Âgenitalium prevalence and antimicrobial resistance in M.Âgenitalium in Denmark, Norway and Sweden in 2016. Clinical Microbiology and Infection, 2018, 24, 533-539.	2.8	74
18	Antimicrobial Resistance in Neisseria gonorrhoeae and Treatment of Gonorrhea. Methods in Molecular Biology, 2019, 1997, 37-58.	0.4	71

#	Article	IF	CITATIONS
19	Analytical Evaluation of GeneXpert CT/NG, the First Genetic Point-of-Care Assay for Simultaneous Detection of Neisseria gonorrhoeae and Chlamydia trachomatis. Journal of Clinical Microbiology, 2013, 51, 1945-1947.	1.8	70
20	<i>In Vitro</i> Activity of Ertapenem versus Ceftriaxone against Neisseria gonorrhoeae Isolates with Highly Diverse Ceftriaxone MIC Values and Effects of Ceftriaxone Resistance Determinants: Ertapenem for Treatment of Gonorrhea?. Antimicrobial Agents and Chemotherapy, 2012, 56, 3603-3609.	1.4	63
21	A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Medicine, 2021, 13, 61.	3.6	63
22	High <i>In Vitro</i> Activity of the Novel Spiropyrimidinetrione AZD0914, a DNA Gyrase Inhibitor, against Multidrug-Resistant Neisseria gonorrhoeae Isolates Suggests a New Effective Option for Oral Treatment of Gonorrhea. Antimicrobial Agents and Chemotherapy, 2014, 58, 5585-5588.	1.4	62
23	Recent advances in the development and use of molecular tests to predict antimicrobial resistance in <i>Neisseria gonorrhoeae</i> . Expert Review of Molecular Diagnostics, 2017, 17, 845-859.	1.5	61
24	Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer. Scientific Reports, 2018, 8, 17596.	1.6	59
25	Characterisation of bla TEM genes and types of β-lactamase plasmids in Neisseria gonorrhoeae – the prevalent and conserved bla TEM-135 has not recently evolved and existed in the Toronto plasmid from the origin. BMC Infectious Diseases, 2014, 14, 454.	1.3	57
26	Genomic evolution of Neisseria gonorrhoeae since the preantibiotic era (1928–2013): antimicrobial use/misuse selects for resistance and drives evolution. BMC Genomics, 2020, 21, 116.	1.2	57
27	First Three Neisseria gonorrhoeae Isolates with High-Level Resistance to Azithromycin in Sweden: a Threat to Currently Available Dual-Antimicrobial Regimens for Treatment of Gonorrhea?. Antimicrobial Agents and Chemotherapy, 2014, 58, 624-625.	1.4	56
28	Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from Vietnam, 2011. BMC Infectious Diseases, 2013, 13, 40.	1.3	54
29	Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nature Communications, 2020, 11, 4126.	5.8	51
30	In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 2018, 73, 2072-2077.	1.3	50
31	<i>In Vitro</i> Activity of the Novel Pleuromutilin Lefamulin (BC-3781) and Effect of Efflux Pump Inactivation on Multidrug-Resistant and Extensively Drug-Resistant Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	48
32	Evaluation of the new AmpliSens multiplex realâ€ŧime <scp>PCR</scp> assay for simultaneous detection of <i>NeisseriaÂgonorrhoeae, ChlamydiaÂtrachomatis, MycoplasmaÂgenitalium</i> , and <i>TrichomonasAvaginalis</i> . Apmis, 2015, 123, 879-886.	0.9	46
33	WHO laboratory validation of Xpert [®] CT/NG and Xpert [®] TV on the GeneXpert system verifies high performances. Apmis, 2018, 126, 907-912.	0.9	45
34	Genetic Resistance Determinants, In Vitro Time-Kill Curve Analysis and Pharmacodynamic Functions for the Novel Topoisomerase II Inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Frontiers in Microbiology, 2015, 6, 1377.	1.5	44
35	Europe-wide expansion and eradication of multidrug-resistant Neisseria gonorrhoeae lineages: a genomic surveillance study. Lancet Microbe, The, 2022, 3, e452-e463.	3.4	44
36	Prevalence of macrolide and fluoroquinolone resistance-mediating mutations in Mycoplasma genitalium in five cities in Russia and Estonia. PLoS ONE, 2017, 12, e0175763.	1.1	39

#	Article	IF	CITATIONS
37	Extensively drug-resistant (XDR) Neisseria gonorrhoeae causing possible gonorrhoea treatment failure with ceftriaxone plus azithromycin in Austria, April 2022. Eurosurveillance, 2022, 27, .	3.9	35
38	Evolution of <i>Neisseria gonorrhoeae</i> is a continuing challenge for molecular detection of gonorrhoea: false negative gonococcal <i>porA</i> mutants are spreading internationally. Sexually Transmitted Infections, 2013, 89, 197-201.	0.8	33
39	Phenotypic and molecular characterization of Neisseria gonorrhoeae isolates from Slovenia, 2006-12: rise and fall of the multidrug-resistant NG-MAST genogroup 1407 clone?. Journal of Antimicrobial Chemotherapy, 2014, 69, 1517-1525.	1.3	33
40	Genome-based epidemiology and antimicrobial resistance determinants of Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina in 2011–16. Journal of Antimicrobial Chemotherapy, 2019, 74, 1551-1559.	1.3	33
41	Cenome Sequencing of a Neisseria gonorrhoeae Isolate of a Successful International Clone with Decreased Susceptibility and Resistance to Extended-Spectrum Cephalosporins. Antimicrobial Agents and Chemotherapy, 2012, 56, 5633-5641.	1.4	31
42	High susceptibility to zoliflodacin and conserved target (CyrB) for zoliflodacin among 1209 consecutive clinical <i>Neisseria gonorrhoeae</i> isiolates from 25 European countries, 2018. Journal of Antimicrobial Chemotherapy, 2021, 76, 1221-1228.	1.3	31
43	Challenges with gonorrhea in the era of multi-drug and extensively drug resistance – are we on the right track?. Expert Review of Anti-Infective Therapy, 2014, 12, 653-656.	2.0	30
44	Antimicrobial susceptibility/resistance and NG-MAST characterisation of Neisseria gonorrhoeae in Belarus, Eastern Europe, 2010–2013. BMC Infectious Diseases, 2015, 15, 29.	1.3	29
45	Genomic epidemiology of Neisseria gonorrhoeae elucidating the gonococcal antimicrobial resistance and lineages/sublineages across Brazil, 2015–16. Journal of Antimicrobial Chemotherapy, 2020, 75, 3163-3172.	1.3	29
46	Genomic analysis and antimicrobial resistance of Neisseria gonorrhoeae isolates from Vietnam in 2011 and 2015–16. Journal of Antimicrobial Chemotherapy, 2020, 75, 1432-1438.	1.3	28
47	Clonally Related Neisseria gonorrhoeae Isolates with Decreased Susceptibility to the Extended-Spectrum Cephalosporin Cefotaxime in Amsterdam, the Netherlands. Antimicrobial Agents and Chemotherapy, 2012, 56, 1516-1522.	1.4	27
48	Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from India, Pakistan and Bhutan in 2007–2011. BMC Infectious Diseases, 2013, 13, 35.	1.3	24
49	In vitro antimicrobial combination testing of and evolution of resistance to the first-in-class spiropyrimidinetrione zoliflodacin combined with six therapeutically relevant antimicrobials for Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 2019, 74, 3521-3529.	1.3	24
50	Antimicrobial susceptibility of <i>Neisseria gonorrhoeae</i> isolates and treatment of gonorrhoea patients in Ternopil and Dnipropetrovsk regions of Ukraine, 2013–2018. Apmis, 2019, 127, 503-509.	0.9	24
51	Pharmacodynamic Evaluation of Dosing, Bacterial Kill, and Resistance Suppression for Zoliflodacin Against Neisseria gonorrhoeae in a Dynamic Hollow Fiber Infection Model. Frontiers in Pharmacology, 2021, 12, 682135.	1.6	23
52	High prevalence of Chlamydia trachomatis, Neisseria gonorrhoeae and particularly Trichomonas vaginalis diagnosed using US FDAâ€approved Aptima molecular tests and evaluation of conventional routine diagnostic tests in Ternopil, Ukraine. Apmis, 2019, 127, 627-634.	0.9	22
53	<i>Neisseria gonorrhoeae</i> Sequence Typing for Antimicrobial Resistance (NG-STAR) clonal complexes are consistent with genomic phylogeny and provide simple nomenclature, rapid visualization and antimicrobial resistance (AMR) lineage predictions. Journal of Antimicrobial Chemotherapy, 2021, 76, 940-944.	1.3	22
54	Macrolide and fluoroquinolone resistance in <i>Mycoplasma genitalium</i> in two Swedish counties, 2011–2015. Apmis, 2018, 126, 123-127.	0.9	20

#	Article	IF	CITATIONS
55	High in vitro activity of a novel dual bacterial topoisomerase inhibitor of the ATPase activities of GyrB and ParE (VT12-008911) against Neisseria gonorrhoeae isolates with various high-level antimicrobial resistance and multidrug resistance. Journal of Antimicrobial Chemotherapy, 2014, 69, 1866-1872.	1.3	19
56	Antimicrobial susceptibility/resistance and genetic characteristics of Neisseria gonorrhoeaeisolates from Poland, 2010-2012. BMC Infectious Diseases, 2014, 14, 65.	1.3	18
57	Antimicrobial resistance prediction in <i>Neisseria gonorrhoeae</i> : current status and future prospects. Expert Review of Molecular Diagnostics, 2022, 22, 29-48.	1.5	18
58	Analytical Specificity and Sensitivity of the APTIMA Combo 2 and APTIMA GC Assays for Detection of Commensal Neisseria Species and Neisseria gonorrhoeae on the Gen-Probe Panther Instrument. Sexually Transmitted Diseases, 2013, 40, 175-178.	0.8	17
59	In vitro activities of the novel bicyclolides modithromycin (EDP-420, EP-013420, S-013420) and EDP-322 against MDR clinical Neisseria gonorrhoeae isolates and international reference strains. Journal of Antimicrobial Chemotherapy, 2015, 70, 173-177.	1.3	17
60	<i>In vitro</i> activity and timeâ€kill curve analysis of sitafloxacin against a global panel of antimicrobialâ€resistant and multidrugâ€resistant <i>Neisseria gonorrhoeae</i> isolates. Apmis, 2018, 126, 29-37.	0.9	16
61	Pharmacodynamic Evaluation of Zoliflodacin Treatment of Neisseria gonorrhoeae Strains With Amino Acid Substitutions in the Zoliflodacin Target GyrB Using a Dynamic Hollow Fiber Infection Model. Frontiers in Pharmacology, 2022, 13, 874176.	1.6	15
62	Verified clinical failure with cefotaxime 1g for treatment of gonorrhoea in the Netherlands: a case report. Sexually Transmitted Infections, 2014, 90, 513-514.	0.8	14
63	Genetic variation regulates the activation and specificity of Restriction-Modification systems in Neisseria gonorrhoeae. Scientific Reports, 2019, 9, 14685.	1.6	14
64	Genomic epidemiology and antimicrobial resistance determinants of <i>Neisseria gonorrhoeae</i> isolates from Ukraine, 2013–2018. Apmis, 2020, 128, 465-475.	0.9	13
65	Aptima <i>Trichomonas vaginalis</i> assay elucidates significant underdiagnosis of trichomoniasis among women in Brazil according to an observational study. Sexually Transmitted Infections, 2019, 95, 129-132.	0.8	12
66	Genomic surveillance and antimicrobial resistance in <i>Neisseria gonorrhoeae</i> isolates in Bangkok, Thailand in 2018. Journal of Antimicrobial Chemotherapy, 2022, , .	1.3	11
67	Efflux Pumps in Neisseria gonorrhoeae: Contributions to Antimicrobial Resistance and Virulence. , 2016, , 439-469.		10
68	Sensitivity, specificity, inclusivity and exclusivity of the updated Aptima Combo 2 assay, which provides detection coverage of the new diagnostic-escape Chlamydia trachomatis variants. BMC Infectious Diseases, 2020, 20, 419.	1.3	10
69	Evaluation of the SpeeDxResistancePlus®GC and SpeeDx GC 23S 2611 (beta) molecular assays for prediction of antimicrobial resistance/susceptibility to ciprofloxacin and azithromycin inNeisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 2021, 76, 84-90.	1.3	10
70	Antimicrobial susceptibility/resistance and molecular epidemiological characteristics of Neisseria gonorrhoeae in 2009 in Belarus. Apmis, 2011, 119, 537-542.	0.9	9
71	Evaluation of Neisseria gonorrhoeae Multiple-Locus Variable-Number Tandem-Repeat Analysis, N. gonorrhoeae Multiantigen Sequence Typing, and Full-LengthporBGene Sequence Analysis for Molecular Epidemiological Typing. Journal of Clinical Microbiology, 2012, 50, 180-183.	1.8	9
72	Trichomonas vaginalis Infections are Rare Among Young Patients Attending an STI Clinic in Sweden. Acta Dermato-Venereologica, 2015, 95, 343-344.	0.6	9

#	Article	IF	CITATIONS
73	Prevalence and risk factors associated with <i>Chlamydia trachomatis</i> , <i>Neisseria gonorrhoeae</i> , and <i>Mycoplasma genitalium</i> among women in Pelotas, Southern Brazil. International Journal of STD and AIDS, 2020, 31, 432-439.	0.5	9
74	Genomic and phenotypic characterisation of invasive neonatal and colonising group B Streptococcus isolates from Slovenia, 2001–2018. BMC Infectious Diseases, 2020, 20, 958.	1.3	9
75	Gentamicin Susceptibility in Neisseria gonorrhoeae and Treatment Outcomes for Urogenital Gonorrhea After 25 Years of Sustained Gentamicin Use in Malawi. Sexually Transmitted Diseases, 2022, 49, 251-256.	0.8	9
76	Prediction of Minimum Inhibitory Concentrations of Antimicrobials for Neisseria gonorrhoeae Using Whole-Genome Sequencing. Methods in Molecular Biology, 2019, 1997, 59-76.	0.4	8
77	Prevalence of Mycoplasma genitalium and Antibiotic Resistance-Associated Mutations in Patients at a Sexually Transmitted Infection Clinic in Iceland, and Comparison of the S-DiaMGTV and Aptima Mycoplasma genitalium Assays for Diagnosis. Journal of Clinical Microbiology, 2020, 58, .	1.8	8
78	Antimicrobial resistance in Neisseria gonorrhoeae isolates and gonorrhoea treatment in the Republic of Belarus, Eastern Europe, 2009–2019. BMC Infectious Diseases, 2021, 21, 520.	1.3	8
79	First National Genomic Epidemiological Study of Neisseria gonorrhoeae Strains Spreading Across Sweden in 2016. Frontiers in Microbiology, 2021, 12, 820998.	1.5	8
80	Evaluation of the New BD Max GC Real-Time PCR Assay, Analytically and Clinically as a Supplementary Test for the BD ProbeTec GC Qx Amplified DNA Assay, for Molecular Detection of Neisseria gonorrhoeae. Journal of Clinical Microbiology, 2015, 53, 3935-3937.	1.8	7
81	Genomic Epidemiology of Azithromycin-Nonsusceptible <i>Neisseria gonorrhoeae</i> , Argentina, 2005–2019. Emerging Infectious Diseases, 2021, 27, 2369-2378.	2.0	7
82	<i>Trichomonas vaginalis</i> is very rare among women with vaginal discharge in Podlaskie province, Poland. Apmis, 2017, 125, 840-843.	0.9	6
83	Trichomonas vaginalis is Rare Among Women in Iceland. Acta Dermato-Venereologica, 2017, 97, 1258-1260.	0.6	5
84	Antimicrobial resistance and molecular epidemiological typing of Neisseria gonorrhoeae isolates from Kyrgyzstan in Central Asia, 2012 and 2017. BMC Infectious Diseases, 2021, 21, 559.	1.3	4
85	A Single Amino Acid Substitution in Elongation Factor G Can Confer Low-Level Gentamicin Resistance in <i>Neisseria gonorrhoeae</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, e0025122.	1.4	4
86	Reply to "Management of Pharyngeal Gonorrhea Is Crucial To Prevent the Emergence and Spread of Antibiotic-Resistant Neisseria gonorrhoeae― Antimicrobial Agents and Chemotherapy, 2012, 56, 4041-4042.	1.4	3
87	Analytical specificity and sensitivity of the novel dualâ€ŧarget GeneProofÂ <i>Neisseria gonorrhoeae </i> <scp>PCR</scp> kit for detection of <i>N. gonorrhoeae</i> . Apmis, 2015, 123, 955-958.	0.9	3
88	Will Genome Analysis Elucidate Evolution, Global Transmission and Virulence of Neisseria Meningitidis Lineages?. EBioMedicine, 2015, 2, 186-187.	2.7	3
89	Lack of diagnostic-escape mutants of group B streptococcus in Slovenia. Clinical Microbiology and Infection, 2021, 27, 1054-1055.	2.8	3
90	Now Is the Time to Implement Whole Genome Sequencing in the Global Antimicrobial Resistance Surveillance for Neisseria gonorrhoeae?. EClinicalMedicine, 2019, 7, 11-12.	3.2	1

#	Article	IF	CITATIONS
91	LB1.69â€Clinical and analytical evaluation of the new aptimamycoplasma genitaliumassay on the panther instrument (HOLOGIC),m. genitaliumprevalence, and antimicrobial resistance inm. genitaliumin sweden, denmark and norway in 2016. , 2017, , .		0
92	P637â€Neisseria gonorrhoeaegenomic diversity in high risk groups in switzerland. , 2019, , .		0
93	O06.2â€ <i>In vitro</i> combination testing and selection of resistance to zoliflodacin combined with six antimicrobials for <i>N. gonorrhoeae</i> ., 2019, , .		0