Marianne Böni-Schnetzler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/272391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cephalic phase of insulin release is modulated by IL-1β. Cell Metabolism, 2022, 34, 991-1003.e6.	16.2	17
2	IL-1beta promotes the age-associated decline of beta cell function. IScience, 2021, 24, 103250.	4.1	10
3	GLP-1 secretion is regulated by IL-6 signalling: a randomised, placebo-controlled study. Diabetologia, 2020, 63, 362-373.	6.3	48
4	Evidence for cephalic phase insulin release in humans: A systematic review and meta-analysis. Appetite, 2020, 155, 104792.	3.7	22
5	Enhancer of Zeste Homolog 2 (EZH2) Mediates Glucolipotoxicity-Induced Apoptosis in β-Cells. International Journal of Molecular Sciences, 2020, 21, 8016.	4.1	3
6	Postprandial Hypoglycemia in Patients after Gastric Bypass Surgery Is Mediated by Glucose-Induced IL-1β. Cell Metabolism, 2020, 31, 699-709.e5.	16.2	28
7	Distinct Transcriptional Responses across Tissue-Resident Macrophages to Short-Term and Long-Term Metabolic Challenge. Cell Reports, 2020, 30, 1627-1643.e7.	6.4	38
8	Inhibition of IL-1beta improves Glycaemia in a Mouse Model for Gestational Diabetes. Scientific Reports, 2020, 10, 3035.	3.3	17
9	Inflammation in the Pathophysiology and Therapy of Cardiometabolic Disease. Endocrine Reviews, 2019, 40, 1080-1091.	20.1	70
10	Islet inflammation in type 2 diabetes. Seminars in Immunopathology, 2019, 41, 501-513.	6.1	119
11	β Cell-Specific Deletion of the IL-1 Receptor Antagonist Impairs β Cell Proliferation and Insulin Secretion. Cell Reports, 2018, 22, 1774-1786.	6.4	59
12	IL-6–Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion. Diabetes, 2018, 67, 36-45.	0.6	39
13	Postprandial macrophage-derived IL-1Î ² stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nature Immunology, 2017, 18, 283-292.	14.5	286
14	Pancreatic α Cell-Derived Glucagon-Related Peptides Are Required for β Cell Adaptation and Glucose Homeostasis. Cell Reports, 2017, 18, 3192-3203.	6.4	87
15	The Role of Inflammation in \hat{I}^2 -cell Dedifferentiation. Scientific Reports, 2017, 7, 6285.	3.3	130
16	Interleukin-33-Activated Islet-Resident Innate Lymphoid Cells Promote Insulin Secretion through Myeloid Cell Retinoic Acid Production. Immunity, 2017, 47, 928-942.e7.	14.3	123
17	Glucose-Dependent Insulinotropic Peptide Stimulates Glucagon-Like Peptide 1 Production by Pancreatic Islets viaÂInterleukin 6, Produced by α Cells. Gastroenterology, 2016, 151, 165-179.	1.3	59
18	Angiotensin II Induces Interleukin-1β–Mediated Islet Inflammation and β-Cell Dysfunction Independently of Vasoconstrictive Effects. Diabetes, 2015, 64, 1273-1283.	0.6	45

#	Article	IF	CITATIONS
19	The IL-1 Pathway in Type 2 Diabetes and Cardiovascular Complications. Trends in Endocrinology and Metabolism, 2015, 26, 551-563.	7.1	146
20	Interleukin-6 contributes to early fasting-induced free fatty acid mobilization in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R861-R867.	1.8	44
21	Inflammation in Obesity and Diabetes: Islet Dysfunction and Therapeutic Opportunity. Cell Metabolism, 2013, 17, 860-872.	16.2	290
22	Identification of a SIRT1 Mutation in a Family with Type 1 Diabetes. Cell Metabolism, 2013, 17, 448-455.	16.2	103
23	How biologics targeting the ILâ€I system are being considered for the treatment of type 2 diabetes. British Journal of Clinical Pharmacology, 2013, 76, 263-268.	2.4	33
24	Increased IL-1β activation, the culprit not only for defective insulin secretion but also for insulin resistance?. Cell Research, 2011, 21, 995-997.	12.0	25
25	IL-1Î ² Activation as a Response to Metabolic Disturbances. Cell Metabolism, 2010, 12, 427-428.	16.2	9
26	Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends in Endocrinology and Metabolism, 2010, 21, 261-267.	7.1	196
27	Islet Inflammation Impairs the Pancreatic \hat{I}^2 -Cell in Type 2 Diabetes. Physiology, 2009, 24, 325-331.	3.1	264
28	Free Fatty Acids Induce a Proinflammatory Response in Islets via the Abundantly Expressed Interleukin-1 Receptor I. Endocrinology, 2009, 150, 5218-5229.	2.8	285
29	Pancreatic islet inflammation in type 2 diabetes: From \hat{I}_{\pm} and \hat{I}^2 cell compensation to dysfunction. Archives of Physiology and Biochemistry, 2009, 115, 240-247.	2.1	87
30	Increased Interleukin (IL)-1β Messenger Ribonucleic Acid Expression in β-Cells of Individuals with Type 2 Diabetes and Regulation of IL-1β in Human Islets by Glucose and Autostimulation. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4065-4074.	3.6	290
31	Macrophages, cytokines and β-cell death in TypeÂ2 diabetes. Biochemical Society Transactions, 2008, 36, 340-342.	3.4	83
32	The Fas pathway is involved in pancreatic beta cell secretory function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2861-2866.	7.1	83
33	Induction of CXCL1 by Extracellular Matrix and Autocrine Enhancement by Interleukin-1 in Rat Pancreatic β-Cells. Endocrinology, 2007, 148, 5582-5590.	2.8	43
34	In-frame exon 2 deletion in insulin receptor RNA in a family with extreme insulin resistance in association with defective insulin binding: a case report. European Journal of Endocrinology, 1996, 135, 357-363.	3.7	3
35	Autophosphorylation within insulin receptor .betasubunits can occur as an intramolecular process. Biochemistry, 1991, 30, 7740-7746.	2.5	34
36	Two Forms of Cytochrome P-450 _{11β} in Rat Zona Glomerulosa Cells: A Short Review. Endocrine Research, 1991, 17, 165-184.	1.2	14

#	Article	IF	CITATIONS
37	Potassium raises cytochrome P-45011β mRNA level in zona glomerulosa of rat adrenals. Molecular and Cellular Endocrinology, 1990, 72, 159-166.	3.2	20
38	The ligand binding subunit of the insulin-like growth factor 1 receptor has properties of a peripheral membrane protein. Biochemical and Biophysical Research Communications, 1986, 136, 45-50.	2.1	16
39	The Cephalic Phase of Insulin Release is Modulated by Il- $1\hat{l}^2$. SSRN Electronic Journal, 0, , .	0.4	0