Anselmo Frizera Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2723909/publications.pdf

Version: 2024-02-01

272 papers

5,626 citations

45 h-index 62 g-index

289 all docs

289 docs citations

times ranked

289

3349 citing authors

#	Article	IF	Citations
1	Desenvolvimento De Um Phase-Locked Loop A Partir De Um Combinador Linear De Fourier. Eletrônica De Potência, 2024, 22, 148-155.	0.1	O
2	Bringing proxemics to walker-assisted gait: using admittance control with spatial modulation to navigate in confined spaces. Personal and Ubiquitous Computing, 2022, 26, 1491-1509.	2.8	9
3	Control Strategies for Human–Robot–Environment Interaction in Assisted Gait with Smart Walkers. , 2022, , 259-286.		5
4	Proof-of-Concept of POF-Based Pressure Sensors Embedded in a Smart Garment for Impact Detection in Perturbation Assessment. Biosystems and Biorobotics, 2022, , 21-25.	0.3	1
5	Characterization and analysis of a POF sensor embedded in different materials: Towards wearable systems for stiffness estimation. Optics and Laser Technology, 2022, 145, 107504.	4.6	2
6	The Impact of Assembly Configuration on Diaphragm-Embedded Fiber Bragg Gratings Pressure Sensors. IEEE Sensors Journal, 2022, 22, 2237-2243.	4.7	5
7	The PoundCloud framework for ROS-based cloud robotics: Case studies on autonomous navigation and human–robot interaction. Robotics and Autonomous Systems, 2022, 150, 103981.	5.1	15
8	Soft wearable robots., 2022,, 27-52.		1
9	Optical fiber materials. , 2022, , 93-118.		O
10	Optical fiber sensing technologies. , 2022, , 119-148.		0
11	Wearable robots instrumentation. , 2022, , 151-173.		O
12	Smart structures and textiles for gait analysis. , 2022, , 175-200.		1
13	Optical fiber fundaments and overview. , 2022, , 67-91.		O
14	Soft robotics and compliant actuators instrumentation. , 2022, , 201-219.		0
15	Wearable multifunctional smart textiles. , 2022, , 223-243.		O
16	Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electronic Advances, 2022, 5, 210098-210098.	13.3	71
17	Introduction and overview of wearable technologies. , 2022, , 3-26.		0
18	Gait analysis: overview, trends, and challenges. , 2022, , 53-64.		1

#	Article	IF	CITATIONS
19	Smart walker's instrumentation and development with compliant optical fiber sensors., 2022,, 245-261.		O
20	BCI based on pedal end-effector triggered through pedaling imagery to promote excitability over the feet motor area. Research on Biomedical Engineering, 2022, 38, 439-449.	2.2	2
21	FBG-Embedded Robotic Manipulator Tool for Structural Integrity Monitoring From Critical Strain-Stress Pair Estimation. IEEE Sensors Journal, 2022, 22, 5695-5702.	4.7	11
22	Al-enabled photonic smart garment for movement analysis. Scientific Reports, 2022, 12, 4067.	3.3	23
23	Diaphragm-assisted impact amplitude and localization measurement system with FBG sensors. Optical Fiber Technology, 2022, 70, 102854.	2.7	2
24	Assessing the mental state of attention using a neurofeedback system and serious game tool. Entertainment Computing, 2022, 43, 100492.	2.9	2
25	Towards an upper limb rehabilitation tool after stroke based on surface electromyography biofeedback and virtual reality. Research on Biomedical Engineering, 2022, 38, 1017-1025.	2.2	3
26	Temperature-Insensitive Curvature Sensor With Plane-by-Plane Inscription of Off-Center Tilted Bragg Gratings in CYTOP Fibers. IEEE Sensors Journal, 2022, 22, 11725-11731.	4.7	6
27	Polymer Optical Fiber Multimaterial: Flexible and Customizable Approach in Sensors Development. IEEE Photonics Technology Letters, 2022, 34, 611-614.	2.5	2
28	Fiber-Optic Hydrophone Based on Michelson's Interferometer with Active Stabilization for Liquid Volume Measurement. Sensors, 2022, 22, 4404.	3.8	5
29	Transmission-Reflection Performance Analysis Using Oxide Nanoparticle-Doped High Scattering Fibers. IEEE Photonics Technology Letters, 2022, 34, 874-877.	2.5	6
30	Force-Displacement Analysis in Diaphragm-Embedded Fiber Bragg Grating Sensors. Sensors, 2022, 22, 5355.	3.8	4
31	Sleeve for Knee Angle Monitoring: An IMU-POF Sensor Fusion System. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 465-474.	6.3	17
32	Collaborative and Inclusive Process with the Autism Community: A Case Study in Colombia About Social Robot Design. International Journal of Social Robotics, 2021, 13, 153-167.	4.6	27
33	Highly Sensitive Fiberâ€Optic Intrinsic Electromagnetic Field Sensing. Advanced Photonics Research, 2021, 2, 2000078.	3.6	34
34	Wearable and Fully-Portable Smart Garment for Mechanical Perturbation Detection With Nanoparticles Optical Fibers. IEEE Sensors Journal, 2021, 21, 2995-3003.	4.7	27
35	A Lightweight Framework for Human Activity Recognition on Wearable Devices. IEEE Sensors Journal, 2021, 21, 24471-24481.	4.7	27
36	Photonic smart bandage for wound healing assessment. Photonics Research, 2021, 9, 272.	7.0	76

#	Article	IF	CITATIONS
37	Effect of a Brain–Computer Interface Based on Pedaling Motor Imagery on Cortical Excitability and Connectivity. Sensors, 2021, 21, 2020.	3.8	10
38	Radiation induced effects on FBGs using different femtosecond laser inscription methods. , 2021, , .		1
39	Datacenter Thermal Monitoring Without Blind Spots: FBG-Based Quasi-Distributed Sensing. IEEE Sensors Journal, 2021, 21, 9869-9876.	4.7	8
40	Polymer Optical Fiber-Embedded Force Sensor System for Assistive Devices With Dynamic Compensation. IEEE Sensors Journal, 2021, 21, 13255-13262.	4.7	4
41	FBG-Based Temperature Sensors for Liquid Identification and Liquid Level Estimation via Random Forest. Sensors, 2021, 21, 4568.	3.8	26
42	An Optimized Self-Compensated Solution for Temperature and Strain Cross-Sensitivity in FBG Interrogators Based on Edge Filter. Sensors, 2021, 21, 5828.	3.8	4
43	Polymer Optical Fiber-Based Smart Garment for Impact Identification and Balance Assessment. IEEE Sensors Journal, 2021, 21, 20078-20085.	4.7	5
44	Machine learning techniques for liquid level estimation using FBG temperature sensor array. Optical Fiber Technology, 2021, 65, 102612.	2.7	27
45	PROTOCOL AND SYSTEM FOR ACQUISITION AND PROCESSING EEG AND SEMG SIGNALS FOR LOWER LIMBS REHABILITATION USE / PROTOCOLO E SISTEMA PARA AQUISIÇÃO E PROCESSAMENTO DE SINAIS EEG E SEMG PARA USO DE REABILITAÇÃO DE MEMBROS INFERIORES. Brazilian Journal of Development, 2021, 7, 7763-7782.	0.1	O
46	FBG-Based Sensor for the Assessment of Heat Transfer Rate of Liquids in a Forced Convective Environment. Sensors, 2021, 21, 6922.	3.8	5
47	Influence of Two-Plane Position and Stress on Intensity-Variation-Based Sensors: Towards Shape Sensing in Polymer Optical Fibers. Sensors, 2021, 21, 7848.	3.8	3
48	Comparative Study of \hat{I}^3 - and e-Radiation-Induced Effects on FBGs Using Different Femtosecond Laser Inscription Methods. Sensors, 2021, 21, 8379.	3.8	6
49	Optical Fiber Specklegram Sensors for Mechanical Measurements: A Review. IEEE Sensors Journal, 2020, 20, 569-576.	4.7	69
50	Polymer Optical Fiber Sensor System for Multi Plane Bending Angle Assessment. IEEE Sensors Journal, 2020, 20, 2518-2525.	4.7	5
51	Simulation System of Electric-Powered Wheelchairs for Training Purposes. Sensors, 2020, 20, 3565.	3.8	9
52	Transmission–Reflection Analysis in high scattering optical fibers: A comparison with single-mode optical fiber. Optical Fiber Technology, 2020, 58, 102303.	2.7	30
53	Perfluorinated fiber material properties following femtosecond laser inscription. Optical Materials, 2020, 109, 110412.	3.6	3
54	Smart textiles for multimodal wearable sensing using highly stretchable multiplexed optical fiber system. Scientific Reports, 2020, 10, 13867.	3.3	111

#	Article	IF	CITATIONS
55	Design of an Enhanced FLC-Based Controller for Selective Harmonic Compensation in Active Power Filters. Electronics (Switzerland), 2020, 9, 2052.	3.1	4
56	Highly Stretchable Polymer Optical Fiber for Mechanical Sensing in Artificial Tendons: Towards Novel Sensors for Soft Robotics. Actuators, 2020, 9, 125.	2.3	10
57	Thermal and Mechanical Analyses of Fiber Bragg Gratings-Embedded Polymer Diaphragms. IEEE Photonics Technology Letters, 2020, 32, 623-626.	2.5	20
58	Assessment of an Assistive Control Approach Applied in an Active Knee Orthosis Plus Walker for Post-Stroke Gait Rehabilitation. Sensors, 2020, 20, 2452.	3.8	15
59	Polymer Optical Fiber-Based Integrated Instrumentation in a Robot-Assisted Rehabilitation Smart Environment: A Proof of Concept. Sensors, 2020, 20, 3199.	3.8	12
60	Low-cost Fiberoptic Probe for Ammonia Early Detection in Fish Farms. Remote Sensing, 2020, 12, 1439.	4.0	27
61	FPI-POFBG Angular Movement Sensor Inscribed in CYTOP Fibers With Dynamic Angle Compensator. IEEE Sensors Journal, 2020, 20, 5962-5969.	4.7	21
62	Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening. Robotics and Autonomous Systems, 2020, 127, 103484.	5.1	25
63	Bragg Gratings Inscribed in Solid-Core Microstructured Single-Mode Polymer Optical Fiber Drawn From a 3D-Printed Polycarbonate Preform. IEEE Sensors Journal, 2020, 20, 12744-12757.	4.7	13
64	Development and Characterization of UV-Resin Coated Fiber Bragg Gratings. Sensors, 2020, 20, 3026.	3.8	10
65	High Sensitive Ammonia Detection in Water With Fabry-Perot Interferometers. IEEE Photonics Technology Letters, 2020, 32, 863-866.	2.5	14
66	A fiber Bragg gratings pair embedded in a polyurethane diaphragm: Towards a temperature-insensitive pressure sensor. Optics and Laser Technology, 2020, 131, 106440.	4.6	41
67	Optimizing Linearity and Sensitivity of 3D-Printed Diaphragms With Chirped FBGs in CYTOP Fibers. IEEE Access, 2020, 8, 31983-31991.	4.2	28
68	A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 988-996.	4.9	48
69	Performance Analysis of a Lower Limb Multi Joint Angle Sensor Using CYTOP Fiber: Influence of Light Source Wavelength and Angular Velocity Compensation. Sensors, 2020, 20, 326.	3.8	8
70	The effect of smart mirror environment on proprioception factors of children with Down syndrome. Research on Biomedical Engineering, 2020, 36, 187-195.	2.2	4
71	A machine learning approach for simultaneous measurement of magnetic field position and intensity with fiber Bragg grating and magnetorheological fluid. Optical Fiber Technology, 2020, 56, 102184.	2.7	68
72	Low-cost and high-resolution pressure sensors using highly stretchable polymer optical fibers. Materials Letters, 2020, 271, 127810.	2.6	27

#	Article	IF	CITATIONS
73	Assistive locomotion device with haptic feedback for guiding visually impaired people. Medical Engineering and Physics, 2020, 80, 18-25.	1.7	21
74	Polymer optical fibers for mechanical wave monitoring. Optics Letters, 2020, 45, 5057.	3.3	4
75	A Robotic Lower-Limb Exoskeleton for Rehabilitation. IFMBE Proceedings, 2020, , 1130-1136.	0.3	1
76	Adhesive assisted fabrication of chirped POF Bragg grating. , 2020, , .		1
77	Femtosecond laser-written long period grating in a multimode CYTOP polymer fibre. , 2020, , .		2
78	Mechanical analysis of microstructured polymer optical fibres with different drawing pressures. Electronics Letters, 2020, 56, 1128-1130.	1.0	1
79	Fibre Bragg grating sensors for sutural expansion assessment in rapid palatal expanders: an exâ€vivo validation. IET Optoelectronics, 2020, 14, 337-342.	3.3	2
80	Detection of water, oil and oil contamination in water using chirped fiber Bragg gratings inscribed in CYTOP fibers., 2020,,.		1
81	Fast and Safe Path Planning Method for an Autonomous Smart Walker. , 2020, , .		0
82	Admittance Controller with Spatial Modulation for Assisted Locomotion using a Smart Walker. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 94, 621-637.	3.4	36
83	Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements. Optics and Laser Technology, 2019, 109, 429-436.	4.6	105
84	Fiber Bragg Based Sensors for Foot Plantar Pressure Analysis. Communications in Computer and Information Science, 2019, , 3-25.	0.5	2
85	A Novel Multimodal Cognitive Interaction for Walker-Assisted Rehabilitation Therapies. , 2019, 2019, 905-910.		18
86	3D-Printing Techniques on the Development of Multiparameter Sensors Using One FBG. Sensors, 2019, 19, 3514.	3.8	19
87	POF Smart Carpet: A Multiplexed Polymer Optical Fiber-Embedded Smart Carpet for Gait Analysis. Sensors, 2019, 19, 3356.	3.8	33
88	Fabry–Perot Curvature Sensor With Cavities Based on UV-Curable Resins: Design, Analysis, and Data Integration Approach. IEEE Sensors Journal, 2019, 19, 9798-9805.	4.7	37
89	Perrogator: A Portable Energy-Efficient Interrogator for Dynamic Monitoring of Wavelength-Based Sensors in Wearable Applications. Sensors, 2019, 19, 2962.	3.8	47
90	Polymer Optical Fiber Sensors in Healthcare Applications: A Comprehensive Review. Sensors, 2019, 19, 3156.	3.8	139

#	Article	IF	Citations
91	Smartphone Integrated Polymer Optical Fiber Humidity Sensor: Towards a Fully Portable Solution for Healthcare., 2019, 3, 1-4.		4
92	Analysis of viscoelastic properties influence on strain and temperature responses of Fabry-Perot cavities based on UV-curable resins. Optics and Laser Technology, 2019, 120, 105743.	4.6	40
93	Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 15.	4.6	25
94	Recognition of Navigation Commands for a Smart Walker Through Force Sensors. IFMBE Proceedings, 2019, , 689-694.	0.3	1
95	Development of Game-Based System for Improvement of the Left-Right Recognition Ability in Children with Down Syndrome. IFMBE Proceedings, 2019, , 627-634.	0.3	1
96	Virtual Reality Simulator for Electric Powered Wheelchairs Using a Joystick. IFMBE Proceedings, 2019, , 729-736.	0.3	4
97	Identification of Kinematic Parameters of Stroke Gait Using Accelerometer. IFMBE Proceedings, 2019, , 261-267.	0.3	0
98	Neurorehabilitation Platform Based on EEG, sEMG and Virtual Reality Using Robotic Monocycle. IFMBE Proceedings, 2019, , 315-321.	0.3	5
99	Plane-by-Plane Written, Low-Loss Polymer Optical Fiber Bragg Grating Arrays for Multiparameter Sensing in a Smart Walker. IEEE Sensors Journal, 2019, 19, 9221-9228.	4.7	22
100	Human Activity Recognition Based on Convolutional Neural Network. IFMBE Proceedings, 2019, , 247-252.	0.3	2
101	Optical Fiber Sensing for Sub-Millimeter Liquid-Level Monitoring: A Review. IEEE Sensors Journal, 2019, 19, 7179-7191.	4.7	67
102	Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots. Materials, 2019, 12, 1443.	2.9	21
103	loToF: A Long-Reach Fully Passive Low-Rate Upstream PHY for IoT over Fiber. Electronics (Switzerland), 2019, 8, 359.	3.1	13
104	Quasi-Distributed Torque and Displacement Sensing on a Series Elastic Actuator's Spring Using FBG Arrays Inscribed in CYTOP Fibers. IEEE Sensors Journal, 2019, 19, 4054-4061.	4.7	70
105	Robot-Assisted Autism Spectrum Disorder Diagnostic Based on Artificial Reasoning. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 96, 267-281.	3.4	26
106	Remote-Operated Multimodal Interface for Therapists During Walker-Assisted Gait Rehabilitation: A Preliminary Assessment. , 2019, , .		6
107	3D-printed POF insole: Development and applications of a low-cost, highly customizable device for plantar pressure and ground reaction forces monitoring. Optics and Laser Technology, 2019, 116, 256-264.	4.6	48
108	On Human-in-the-Loop CPS in Healthcare: A Cloud-Enabled Mobility Assistance Service. Robotica, 2019, 37, 1477-1493.	1.9	13

#	Article	IF	Citations
109	A Comparative Study of Markerless Systems Based on Color-Depth Cameras, Polymer Optical Fiber Curvature Sensors, and Inertial Measurement Units: Towards Increasing the Accuracy in Joint Angle Estimation. Electronics (Switzerland), 2019, 8, 173.	3.1	21
110	Development of Serious Games for Neurorehabilitation of Children with Attention-Deficit/Hyperactivity Disorder through Neurofeedback. , 2019, , .		5
111	Cloud Robotics Experimentation Testbeds: a Cloud-Based Navigation Case Study. , 2019, , .		7
112	A Therapist Helping Hand for Walker-Assisted Gait Rehabilitation: A Pre-Clinical Assessment. , 2019, , .		5
113	Simultaneous measurement of pressure and temperature with a single FBG embedded in a polymer diaphragm. Optics and Laser Technology, 2019, 112, 77-84.	4.6	91
114	Combined Bending and Torsion Sensing by Induced Birefringence in Distributed Bragg Reflector Laser. Journal of Lightwave Technology, 2019, 37, 861-867.	4.6	11
115	Polymer Optical Fiber-Based Sensor System for Smart Walker Instrumentation and Health Assessment. IEEE Sensors Journal, 2019, 19, 567-574.	4.7	20
116	Lower Limb Exoskeletons in Latin-America. Biosystems and Biorobotics, 2019, , 206-209.	0.3	0
117	Simultaneous Measurement of Axial Strain, Bending and Torsion With a Single Fiber Bragg Grating in CYTOP Fiber. Journal of Lightwave Technology, 2019, 37, 971-980.	4.6	85
118	Polymer optical fiber-embedded, 3D-printed instrumented support for microclimate and human-robot interaction forces assessment. Optics and Laser Technology, 2019, 112, 323-331.	4.6	21
119	Multiplexing technique for quasi-distributed sensors arrays in polymer optical fiber intensity variation-based sensors. Optics and Laser Technology, 2019, 111, 81-88.	4.6	75
120	Stance Control with the Active Knee Orthosis ALLOR for Post-Stroke Patients During Walking. Biosystems and Biorobotics, 2019, , 196-200.	0.3	4
121	Long period grating in a multimode cyclic transparent optical polymer fiber inscribed using a femtosecond laser. Optics Letters, 2019, 44, 5346.	3.3	36
122	Development of Polymer Optical Fiber Sensors for Lower Limb Exoskeletons Instrumentation. Biosystems and Biorobotics, 2019, , 155-159.	0.3	4
123	Design and Development of Hardware and Software to Command a Motorized Exercise Static Bike. IFMBE Proceedings, 2019, , 609-617.	0.3	0
124	A Multi-Kinect System for Serious Game Development Using ROS and Unity. IFMBE Proceedings, 2019, , 585-591.	0.3	0
125	Temperature cross-sensitivity compensation in liquid level sensor using Mach-Zehnder interferometers., 2019,,.		1
126	Proof-of-concept of a carpet-embedded heterogeneous optical fiber sensor system for gait analysis. , 2019, , .		0

#	Article	IF	Citations
127	Analysis of the Diaphragm Thickness Influence in a FBG Pressure Sensor Response., 2019, , .		O
128	Polymer Optical Fiber Sensors for Treadmill Instrumentation. , 2019, , .		0
129	Temperature Cross-Sensitivity Optimization for Mach-Zehnder Interferometers Liquid Level Sensors. , 2019, , .		0
130	Instrumentation and validation of polymer optical fiber sensor technology on a knee exoskeleton. , 2019, , .		1
131	Fiber Bragg Gratings Sensors on Sutural Expansion Assessment: a Pilot Study. , 2019, , .		0
132	Design and Analysis of a Smartphone-integrated Polymer Optical Fiber Curvature Sensor., 2019,,.		1
133	Polymer Optical Fiber for Angle and Torque Measurements of a Series Elastic Actuator's Spring. Journal of Lightwave Technology, 2018, 36, 1698-1705.	4.6	62
134	Assistive Device for Guiding Visually Impaired People With Mobility Disorders. , 2018, , .		1
135	FBG-Embedded Oblong Diaphragms with Extended Dynamic Range. , 2018, 2, 1-4.		7
136	Liquid Level Measurement Based on FBG-Embedded Diaphragms With Temperature Compensation. IEEE Sensors Journal, 2018, 18, 193-200.	4.7	106
137	Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber. IEEE Sensors Journal, 2018, 18, 2353-2361.	4.7	60
138	Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis. Optical Fiber Technology, 2018, 41, 205-211.	2.7	58
139	Polymer Optical Fiber for In-Shoe Monitoring of Ground Reaction Forces During the Gait. IEEE Sensors Journal, 2018, 18, 2362-2368.	4.7	54
140	Multi-interface level in oil tanks and applications of optical fiber sensors. Optical Fiber Technology, 2018, 40, 82-92.	2.7	72
141	POF-IMU sensor system: A fusion between inertial measurement units and POF sensors for low-cost and highly reliable systems. Optical Fiber Technology, 2018, 43, 82-89.	2.7	15
142	Viscoelastic features based compensation technique for polymer optical fiber curvature sensors. Optics and Laser Technology, 2018, 105, 35-40.	4.6	47
143	Dynamic Compensation Technique for POF Curvature Sensors. Journal of Lightwave Technology, 2018, 36, 1112-1117.	4.6	23
144	Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors. Optics and Laser Technology, 2018, 100, 272-281.	4.6	68

#	Article	IF	Citations
145	Compensation technique for environmental and light source power variations applied in a polymer optical fiber curvature sensor for wearable devices. Research on Biomedical Engineering, 2018, 34, 37-44.	2.2	4
146	Fiber Bragg Gratings in CYTOP Fibers Embedded in a 3D-Printed Flexible Support for Assessment of Human–Robot Interaction Forces. Materials, 2018, 11, 2305.	2.9	60
147	Application of Additive Layer Manufacturing Technique on the Development of High Sensitive Fiber Bragg Grating Temperature Sensors. Sensors, 2018, 18, 4120.	3.8	68
148	Towards a New Generation of Smart Devices for Mobility Assistance: CloudWalker, a Cloud-Enabled Cyber-Physical System. , 2018 , , .		5
149	Robot-Assisted Diagnosis for Children with Autism Spectrum Disorder Based on Automated Analysis of Nonverbal Cues. , 2018, , .		12
150	Fiber Bragg grating-based sensor for torque and angle measurement in a series elastic actuator's spring. Applied Optics, 2018, 57, 7883.	1.8	19
151	Design considerations, analysis, and application of a low-cost, fully portable, wearable polymer optical fiber curvature sensor. Applied Optics, 2018, 57, 6927.	1.8	24
152	Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG. Research on Biomedical Engineering, 2018, 34, 198-210.	2.2	29
153	Mechanical properties characterization of polymethyl methacrylate polymer optical fibers after thermal and chemical treatments. Optical Fiber Technology, 2018, 43, 106-111.	2.7	23
154	A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers. Measurement: Journal of the International Measurement Confederation, 2018, 124, 486-493.	5.0	69
155	Influence of the Cladding Structure in PMMA mPOFs Mechanical Properties for Strain Sensors Applications. IEEE Sensors Journal, 2018, 18, 5805-5811.	4.7	10
156	Polymer Optical Fiber Sensors in Wearable Devices: Toward Novel Instrumentation Approaches for Gait Assistance Devices. IEEE Sensors Journal, 2018, 18, 7085-7092.	4.7	57
157	Novel active filter selective control strategy using fourier linear combiners. , 2018, , .		0
158	Material features based compensation technique for the temperature effects in a polymer diaphragm-based FBG pressure sensor. Optics Express, 2018, 26, 20590.	3.4	75
159	Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials. Optical Materials Express, 2018, 8, 804.	3.0	57
160	Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature. Applied Optics, 2018, 57, 1717.	1.8	64
161	Strain, temperature, moisture, and transverse force sensing using fused polymer optical fibers. Optics Express, 2018, 26, 12939.	3.4	26
162	Design and characterization of a curvature sensor using fused polymer optical fibers. Optics Letters, 2018, 43, 2539.	3.3	22

#	Article	IF	Citations
163	Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications. Optics Letters, 2018, 43, 1754.	3.3	15
164	Polymer Optical Fiber Bragg Gratings in CYTOP Fibers for Angle Measurement with Dynamic Compensation. Polymers, 2018, 10, 674.	4.5	76
165	A Polymer Optical Fiber Temperature Sensor Based on Material Features. Sensors, 2018, 18, 301.	3.8	77
166	Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect. Sensors, 2018, 18, 916.	3.8	62
167	Gait Shear and Plantar Pressure Monitoring: A Non-Invasive OFS Based Solution for e-Health Architectures. Sensors, 2018, 18, 1334.	3.8	45
168	Thermal Treatments and Compensation Techniques for the Improved Response of FBG Sensors in POFs. Journal of Lightwave Technology, 2018, 36, 3611-3617.	4.6	15
169	Compensation Method for Temperature Cross-Sensitivity in Transverse Force Applications With FBG Sensors in POFs. Journal of Lightwave Technology, 2018, 36, 3660-3665.	4.6	74
170	FBG-Embedded 3-D Printed ABS Sensing Pads: The Impact of Infill Density on Sensitivity and Dynamic Range in Force Sensors. IEEE Sensors Journal, 2018, 18, 8381-8388.	4.7	74
171	Biaxial optical fiber sensor based in two multiplexed Bragg gratings for simultaneous shear stress and vertical pressure monitoring. , $2018, \ldots$		2
172	Characterization of a new polymer optical fiber with enhanced sensing capabilities using a Bragg grating. Optics Letters, 2018, 43, 4799.	3.3	66
173	Water-oil interface level sensor based on FBG-embedded multi-diaphragms system. , 2018, , .		0
174	SOFTWARE INTERFACE FOR ONLINE MONITORING OF PEDALING ON AN EXERCISE BIKE. , 2018, , .		1
175	A cost-effective edge-filter-based FBG strain interrogator using catastrophic fuse effect microcavity interferometers. , $2018, $, .		0
176	Multi-Parameter Interferometric Sensor Based on a Reduced Diameter Core Axial Offseted Fiber. IEEE Photonics Technology Letters, 2017, 29, 239-242.	2.5	20
177	Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robotics and Autonomous Systems, 2017, 91, 101-114.	5.1	54
178	Dynamic Vehicle Programming and Routing System Applied to Wheelchair Transportation. IEEE Latin America Transactions, 2017, 15, 317-323.	1.6	3
179	Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring. Journal of Biomedical Optics, 2017, 22, 091507.	2.6	55
180	Analytical model for a polymer optical fiber under dynamic bending. Optics and Laser Technology, 2017, 93, 92-98.	4.6	65

#	Article	IF	Citations
181	BIOMECHANICAL COMPARISON OF PATIENTS WITH CP WITH DIFFERENT LEVELS OF GAIT ASSISTANCE USING CPWALKER., 2017,,.		O
182	New sequence voltage detector for Distributed Generation with high-harmonic distortion using Fourier Linear Combiner. , 2017, , .		1
183	Hysteresis compensation technique for POF curvature sensors. Proceedings of SPIE, 2017, , .	0.8	2
184	Hysteresis compensation technique applied to polymer optical fiber curvature sensor for lower limb exoskeletons. Measurement Science and Technology, 2017, 28, 125103.	2.6	29
185	Non-supervised Feature Selection: Evaluation in a BCI for Single-Trial Recognition of Gait Preparation/Stop. Biosystems and Biorobotics, 2017, , 1115-1120.	0.3	0
186	Path following control for assistance robots. , 2017, , .		0
187	Development and pilot test of a virtual reality system for electric powered wheelchair simulation., 2017,,.		8
188	Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems. Optics Express, 2017, 25, 30051.	3.4	58
189	Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices. Sensors, 2017, 17, 2414.	3.8	62
190	Adaptive Spatial Filter Based on Similarity Indices to Preserve the Neural Information on EEG Signals during On-Line Processing. Sensors, 2017, 17, 2725.	3.8	24
191	Knee Impedance Modulation to Control an Active Orthosis Using Insole Sensors. Sensors, 2017, 17, 2751.	3.8	36
192	Adaptation of a smart walker for stroke individuals: a study on sEMG and accelerometer signals. Research on Biomedical Engineering, 2017, 33, 293-300.	2.2	7
193	Dexterous hand gestures recognition based on low-density sEMG signals for upper-limb forearm amputees. Research on Biomedical Engineering, 2017, 33, 202-217.	2.2	11
194	Serious Game for Post-stroke Upper Limb Rehabilitation. Biosystems and Biorobotics, 2017, , 1445-1450.	0.3	5
195	Pseudo-online Multimodal Interface Based on Movement Prediction for Lower Limbs Rehabilitation. Biosystems and Biorobotics, 2017, , 1415-1419.	0.3	2
196	A New Controller for a Smart Walker Based on Human-Robot Formation. Sensors, 2016, 16, 1116.	3.8	23
197	An IMU-to-Body Alignment Method Applied to Human Gait Analysis. Sensors, 2016, 16, 2090.	3.8	86
198	Analysis of the use of a robot to improve social skills in children with autism spectrum disorder. Research on Biomedical Engineering, 2016, 32, 161-175.	2.2	35

#	Article	IF	CITATIONS
199	Human-Robot interaction strategy for overground rehabilitation in patients with Cerebral Palsy. , 2016, , .		3
200	Assistive Devices for Human Mobility and Gait Rehabilitation. Springer Tracts in Advanced Robotics, 2016, , 1-15.	0.4	5
201	Human-Robot Interaction for Assisting Human Locomotion. Springer Tracts in Advanced Robotics, 2016, , 17-31.	0.4	3
202	Development of a Cognitive HRI Strategy for Mobile Robot Control. Springer Tracts in Advanced Robotics, 2016, , 33-55.	0.4	2
203	Multimodal Interface for Human Mobility Assistance. Springer Tracts in Advanced Robotics, 2016, , 81-100.	0.4	0
204	Conclusions and Future Works. Springer Tracts in Advanced Robotics, 2016, , 101-105.	0.4	0
205	Human-Robot Interaction Strategies for Walker-Assisted Locomotion. Springer Tracts in Advanced Robotics, 2016, , .	0.4	24
206	Multimodal Human–Robot Interaction for Walker-Assisted Gait. IEEE Systems Journal, 2016, 10, 933-943.	4.6	47
207	Interrogation of optical fiber based on the fusion of OFDR and TRA techniques. Optical and Quantum Electronics, 2016, 48, 1.	3.3	2
208	Feature reduction and multi-classification of different assistive devices according to the gait pattern. Disability and Rehabilitation: Assistive Technology, 2016, 11, 202-218.	2.2	5
209	Envelope-based technique for liquid level sensors using an in-line fiber Mach–Zehnder interferometer. Applied Optics, 2016, 55, 9803.	2.1	31
210	Design of a robotic cane to assist people with disabilities. , 2015, , .		2
211	Feature reduction with PCA/KPCA for gait classification with different assistive devices. International Journal of Intelligent Computing and Cybernetics, 2015, 8, 363-382.	2.7	5
212	Robotics as a Tool for Physiotherapy and Rehabilitation Sessions**Authors acknowledge the financial support from FAPES, CAPES and CNPq IFAC-PapersOnLine, 2015, 48, 148-153.	0.9	7
213	Corrosion Resistant FBG-Based Quasi-Distributed Sensor for Crude Oil Tank Dynamic Temperature Profile Monitoring. Sensors, 2015, 15, 30693-30703.	3.8	60
214	Smart walker use for ataxia's rehabilitation: Case study. , 2015, , .		7
215	A new optical pressure sensor interrogated by speckles pattern for oil industry. Proceedings of SPIE, 2015, , .	0.8	4
216	Development of a real-time web based power quality and consumption smart meter., 2015,,.		0

#	Article	IF	Citations
217	Unobtrusive heart rate monitor based on a fiber specklegram sensor and a single-board computer. Proceedings of SPIE, 2015, , .	0.8	2
218	Smart Walkers: Advanced Robotic Human Walking-Aid Systems. Springer Tracts in Advanced Robotics, 2015, , 103-131.	0.4	13
219	A review of the functionalities of smart walkers. Medical Engineering and Physics, 2015, 37, 917-928.	1.7	74
220	Design of active orthoses for a robotic gait rehabilitation system. Frontiers of Mechanical Engineering, 2015, 10, 242-254.	4.3	6
221	Towards a Robotic Knee Exoskeleton Control Based on Human Motion Intention through EEG and sEMGsignals. Procedia Manufacturing, 2015, 3, 1379-1386.	1.9	30
222	Magnetic, Angular Rate and Gravity Sensor System Fusion for Orientation Estimation. Studies in Health Technology and Informatics, 2015, 217, 261-6.	0.3	1
223	Assessment of walker-assisted gait based on Principal Component Analysis and wireless inertial sensors. Revista Brasileira De Engenharia Biomedica, 2014, 30, 220-231.	0.3	4
224	Assessment of Cervical Spine Range of Rotation with Inertial Sensors After a Vertebral Manipulation Procedure. Journal of Medical Imaging and Health Informatics, 2014, 4, 131-136.	0.3	0
225	Sensor fusion to control a robotic walker based on upper-limbs reaction forces and gait kinematics. , 2014, , .		6
226	Towards a Smart Walker controller for physiotherapy and rehabilitation purposes. , 2014, , .		2
227	Identification of low level sEMG signals for individual finger prosthesis. , 2014, , .		5
228	Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait. Computer Methods and Programs in Biomedicine, 2014, 113, 736-748.	4.7	15
229	Assessment of applicability of robotic walker for post-stroke hemiparetic individuals through muscle pattern analysis. , 2014, , .		0
230	Legs tracking for walker-rehabilitation purposes. , 2014, , .		13
231	Human-walker interaction on slopes based on LRF and IMU sensors. , 2014, , .		4
232	Using linear discriminant function to detect eyes closing activities through alpha wave. , 2014, , .		1
233	Design, implementation and testing of a new user interface for a smart walker. , 2014, , .		12
234	Real time control of the ASBGo walker through a physical human–robot interface. Measurement: Journal of the International Measurement Confederation, 2014, 48, 77-86.	5.0	14

#	Article	IF	CITATIONS
235	Human–robot interaction based on wearable IMU sensor and laser range finder. Robotics and Autonomous Systems, 2014, 62, 1425-1439.	5.1	57
236	Synthesis of gold nanoparticles for application as biosensors in engineering. Proceedings of SPIE, 2014, , .	0.8	0
237	Platform for Multimodal Signal Acquisition for the Control of Lower Limb Rehabilitation Devices. , 2014, , .		2
238	ZigBee Wearable Sensor Development for Upper Limb Robotics Rehabilitation. IEEE Latin America Transactions, 2013, 11, 408-413.	1.6	6
239	Motor and bioelectric evaluation of human movements through inertial and myoelectric sensors. , 2013, , .		0
240	Pattern recognition of hand movements with low density sEMG for prosthesis control purposes., 2013, 2013, 6650361.		6
241	Towards semg classification based on Bayesian and k-NN to control a prosthetic hand., 2013,,.		10
242	A new integrated device to read user intentions when walking with a Smart Walker. , 2013, , .		3
243	Use of computer vision for localization of a robotic wheelchair in an intelligent space. , 2013, , .		3
244	Feature extraction and classification of sEMG signals applied to a virtual hand prosthesis. , 2013, 2013, 1911-4.		4
245	Multivariate analysis of walker-assisted ambulation. , 2013, , .		1
246	DYNAMICS OF HUMAN LOWER LIMBS USING CGA DATA AND BSIP PREDICTIVE EQUATIONS. , 2013, , .		0
247	Evaluation of IMU ZigBee Sensors for Upper Limb Rehabilitation. Biosystems and Biorobotics, 2013, , 461-465.	0.3	7
248	Assessment of Walker-assisted Human Interaction from LRF and Wearable Wireless Inertial Sensors. , 2013, , .		1
249	Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. , 2012, , .		28
250	Movement analysis in learning by repetitive recall. An approach for automatic assistance in physiotherapy. , 2012, , .		1
251	Characterization and diagnosis of fibromyalgia based on fatigue analysis with sEMG signals. , $2012, \ldots$		0
252	Capture protocol of forearm sEMG signals with four channels in healthy and amputee people. , 2012, , .		2

#	Article	IF	CITATIONS
253	Characterization of spatio-temporal parameters of human gait assisted by a robotic walker., 2012,,.		11
254	Online control of a mobility assistance Smart Walker., 2012,,.		11
255	A novel human-machine interface for guiding: The NeoASAS smart walker. , 2012, , .		8
256	An approach to automatic assistance in physiotherapy based on on-line movement identification., 2012,		0
257	Robotic walkers from a clinical point of view: Feature-based classification and proposal of the UFES Walker. , 2012 , , .		5
258	Measurement of head relocation accuracy in the sagittal plane using static photogrammetry and inertial measurement unit. , 2012, , .		1
259	Advanced Hybrid Technology for Neurorehabilitation: The HYPER Project. Intelligent Systems Reference Library, 2012, , 89-108.	1.2	9
260	Assistive mobility devices focusing on Smart Walkers: Classification and review. Robotics and Autonomous Systems, 2012, 60, 548-562.	5.1	198
261	Empowering and Assisting Natural Human Mobility: The Simbiosis Walker. International Journal of Advanced Robotic Systems, 2011, 8, 29.	2.1	42
262	Filtrado Adaptativo de Componentes Involuntarias en Marcha Asistida por Andador para Detecci \tilde{A}^3 n de Intenciones. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2011, 8, 71-80.	1.0	0
263	Estimation of gait parameters by measuring upper limb–walker interaction forces. Sensors and Actuators A: Physical, 2010, 162, 276-283.	4.1	24
264	Extraction of user's navigation commands from upper body force interaction in walker assisted gait. BioMedical Engineering OnLine, 2010, 9, 37.	2.7	30
265	Assessment of the laterality effects through forearm reaction forces in walker assisted gait. Procedia Chemistry, 2009, 1, 1227-1230.	0.7	5
266	LAZARIM: Standing-up frame to support mobility for older persons. Gerontechnology, 2009, 8, .	0.1	2
267	Design and evaluation of a fast model-based algorithm for ultrasonic range measurements. Sensors and Actuators A: Physical, 2008, 148, 335-341.	4.1	34
268	The smart walkers as geriatric assistive device. The simbiosis purpose. Gerontechnology, 2008, 7, .	0.1	26
269	Feasibility in human machine interfaces for elderly people. Gerontechnology, 2008, 7, .	0.1	1
270	Human-Machine Interface Based on Electro-Biological Signals for Mobile Vehicles. , 2006, , .		22

#	Article	IF	CITATIONS
271	Human–Robot Cognitive Interaction. , 0, , 87-125.		17
272	Simulation of FBG Temperature Sensor Array for Oil Identification via Random Forest Classification. , $0, , .$		1