
Terrence D Ruddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2723528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review. Progress in Cardiovascular Diseases, 1985, 28, 1-83.	1.6	751
2	Impaired Myocardial Flow Reserve on Rubidium-82 Positron Emission Tomography Imaging Predicts Adverse Outcomes in Patients Assessed for Myocardial Ischemia. Journal of the American College of Cardiology, 2011, 58, 740-748.	1.2	498
3	Anatomic Versus Physiologic Assessment of Coronary Artery Disease. Journal of the American College of Cardiology, 2013, 62, 1639-1653.	1.2	495
4	F-18-Fluorodeoxyglucose Positron Emission Tomography Imaging-Assisted Management of Patients With Severe Left Ventricular Dysfunction and Suspected Coronary Disease. Journal of the American College of Cardiology, 2007, 50, 2002-2012.	1.2	403
5	What is the Prognostic Value of Myocardial Perfusion Imaging Using Rubidium-82 Positron Emission Tomography?. Journal of the American College of Cardiology, 2006, 48, 1029-1039.	1.2	333
6	Prognostic Importance of Thallium Uptake by the Lungs during Exercise in Coronary Artery Disease. New England Journal of Medicine, 1987, 317, 1485-1489.	13.9	256
7	Prognostic Value of 64-Slice Cardiac Computed Tomography. Journal of the American College of Cardiology, 2010, 55, 1017-1028.	1.2	256
8	Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease?. Journal of Nuclear Cardiology, 2012, 19, 670-680.	1.4	252
9	Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT. JACC: Cardiovascular Imaging, 2018, 11, 1654-1663.	2.3	246
10	Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Science Advances, 2016, 2, e1600224.	4.7	214
11	Myocardial perfusion and function: Single photon emission computed tomography. Journal of Nuclear Cardiology, 2007, 14, e39-e60.	1.4	187
12	Joint SNMMI–ASNC Expert Consensus Document on the Role of ¹⁸ F-FDG PET/CT in Cardiac Sarcoid Detection and Therapy Monitoring. Journal of Nuclear Medicine, 2017, 58, 1341-1353.	2.8	187
13	Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. Journal of the American College of Cardiology, 2002, 40, 1735-1743.	1.2	174
14	Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. Journal of Nuclear Medicine, 2018, 59, 273-293.	2.8	163
15	Increasing Benefit From Revascularization Is Associated With Increasing Amounts of Myocardial Hibernation. JACC: Cardiovascular Imaging, 2009, 2, 1060-1068.	2.3	159
16	Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. Journal of Nuclear Cardiology, 2018, 25, 269-297.	1.4	151
17	Potential Clinical and Economic Consequences of Noncardiac Incidental Findings on Cardiac Computed Tomography. Journal of the American College of Cardiology, 2009, 54, 1533-1541.	1.2	145
18	Diagnostic Accuracy and Impact of Computed Tomographic Coronary Angiography on Utilization of Invasive Coronary Angiography. Circulation: Cardiovascular Imaging, 2009, 2, 16-23.	1.3	136

#	Article	IF	CITATIONS
19	Dynamic SPECT Measurement of Absolute Myocardial Blood Flow in a Porcine Model. Journal of Nuclear Medicine, 2014, 55, 1685-1691.	2.8	134
20	Joint SNMMI–ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. Journal of Nuclear Cardiology, 2017, 24, 1741-1758.	1.4	132
21	An Initial Strategy of Intensive Medical Therapy Is Comparable to That of Coronary Revascularization for Suppression of Scintigraphic Ischemia in High-Risk But Stable Survivors of Acute Myocardial Infarction. Journal of the American College of Cardiology, 2006, 48, 2458-2467.	1.2	120
22	A Multinational Study to Establish the Value of Early Adenosine Technetium-99m Sestamibi Myocardial Perfusion Imaging in Identifying a Low-Risk Group for Early Hospital Discharge After Acute Myocardial Infarction. Journal of the American College of Cardiology, 2006, 48, 2448-2457.	1.2	119
23	Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study. Journal of Nuclear Medicine, 2019, 60, 664-670.	2.8	113
24	Half-Time SPECT Myocardial Perfusion Imaging with Attenuation Correction. Journal of Nuclear Medicine, 2009, 50, 554-562.	2.8	103
25	Effects of late percutaneous transluminal coronary angioplasty of an occluded infarct-related coronary artery on left ventricular function in patients with a recent (<6 weeks) Q-wave acute myocardial infarction (total occlusion post-myocardial infarction intervention study [TOMIIS]—A) Tj ETQq1 1 (0.78 ⁴ 314	rgB 1 9Overlact
26	Prognostic Value of Rubidium-82 Positron Emission Tomography in Patients After Heart Transplant. Circulation: Cardiovascular Imaging, 2014, 7, 930-937.	1.3	96
27	Optimization of SPECT Measurement of Myocardial Blood Flow with Corrections for Attenuation, Motion, and Blood Binding Compared with PET. Journal of Nuclear Medicine, 2017, 58, 2013-2019.	2.8	88
28	Automatic and visual reproducibility of perfusion and function measures for myocardial perfusion SPECT. Journal of Nuclear Cardiology, 2010, 17, 1050-1057.	1.4	77
29	Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). Journal of Nuclear Cardiology, 2020, 27, 1010-1021.	1.4	74
30	5-Year Prognostic Value of QuantitativeÂVersus Visual MPI in SubtleÂPerfusionÂDefects. JACC: Cardiovascular Imaging, 2020, 13, 774-785.	2.3	70
31	Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. European Heart Journal Cardiovascular Imaging, 2020, 21, 549-559.	0.5	70
32	Particulate air pollution and vascular reactivity: the bus stop study. International Archives of Occupational and Environmental Health, 2007, 81, 159-164.	1.1	68
33	Treadmill Exercise Produces Larger Perfusion Defects Than Dipyridamole Stress N-13 Ammonia Positron Emission Tomography. Journal of the American College of Cardiology, 2006, 47, 411-416.	1.2	62
34	Prognostic Value of PETÂMyocardialÂPerfusion ImagingÂinÂObese Patients. JACC: Cardiovascular Imaging, 2014, 7, 278-287.	2.3	62
35	Long-Term Follow-Up of Outcomes With F-18-Fluorodeoxyglucose Positron Emission Tomography Imaging–Assisted Management of Patients With Severe Left Ventricular Dysfunction Secondary to Coronary Disease. Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	60
36	Perioperative Diastolic Dysfunction in Patients Undergoing Noncardiac Surgery Is an Independent Risk Factor for Cardiovascular Events. Anesthesiology, 2016, 125, 72-91.	1.3	57

#	Article	IF	CITATIONS
37	Inotropic effect of enoximone in patients with severe heart failure: Demonstration by left ventricular end-systolic pressure-volume analysis. Journal of the American College of Cardiology, 1987, 9, 1117-1123.	1.2	55
38	New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease. BioMed Research International, 2014, 2014, 1-24.	0.9	52
39	Differentiation of restrictive cardiomyopathy from pericardial constriction: Assessment of diastolic function by radionuclide angiography. Journal of the American College of Cardiology, 1989, 13, 1007-1014.	1.2	51
40	Comparison of treadmill exercise versus dipyridamole stress with myocardial perfusion imaging using rubidium-82 positron emission tomography. Journal of the American College of Cardiology, 2005, 45, 1227-1234.	1.2	50
41	PET/CT for Diagnosis and Management of Large-Vessel Vasculitis. Current Cardiology Reports, 2019, 21, 34.	1.3	49
42	Prognostic significance of dipyridamole-induced ST depression in patients with normal 82Rb PET myocardial perfusion imaging. Journal of Nuclear Medicine, 2005, 46, 1095-101.	2.8	49
43	Left ventricular ejection fraction response during exercise in asymptomatic systemic hypertension. American Journal of Cardiology, 1987, 59, 409-413.	0.7	48
44	Paracrine Engineering of Human Cardiac Stem Cells With Insulinâ€Like Growth Factor 1 Enhances Myocardial Repair. Journal of the American Heart Association, 2015, 4, e002104.	1.6	48
45	Quantitative analysis of dipyridamole-thallium images for the detection of coronary artery disease. Journal of the American College of Cardiology, 1987, 10, 142-149.	1.2	47
46	Application of Cardiac Molecular Imaging Using Positron Emission Tomography in Evaluation of Drug and Therapeutics for Cardiovascular Disorders. Current Pharmaceutical Design, 2005, 11, 903-932.	0.9	46
47	Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC: Cardiovascular Imaging, 2022, 15, 1091-1102.	2.3	44
48	Clinical Interpretation Standards and Quality Assurance for the Multicenter PET/CT Trial Rubidium-ARMI. Journal of Nuclear Medicine, 2014, 55, 58-64.	2.8	40
49	Prognostically safe stress-only single-photon emission computed tomography myocardial perfusion imaging guided by machine learning: report from REFINE SPECT. European Heart Journal Cardiovascular Imaging, 2021, 22, 705-714.	0.5	38
50	Appropriate Use Criteria for PET Myocardial Perfusion Imaging. Journal of Nuclear Medicine, 2020, 61, 1221-1265.	2.8	36
51	Single-Phase CT Aligned to Gated PET for Respiratory Motion Correction in Cardiac PET/CT. Journal of Nuclear Medicine, 2010, 51, 1182-1190.	2.8	35
52	Quantitative PET/CT Measures of Myocardial Flow Reserve and Atherosclerosis for Cardiac Risk Assessment and Predicting Adverse Patient Outcomes. Current Cardiology Reports, 2013, 15, 344.	1.3	34
53	Anterior ST segment depression in acute inferior myocardial infarction as a marker of greater inferior, apical, and posterolateral damage. American Heart Journal, 1986, 112, 1210-1216.	1.2	33
54	Decreased coronary sinus oxygen content: A predictor of adverse prognosis in patients with severe congestive heart failure. Journal of the American College of Cardiology, 1991, 18, 1631-1637.	1.2	33

#	Article	IF	CITATIONS
55	Formulation, characterization and tissue distribution of a novel pH-sensitive long-circulating liposome-based theranostic suitable for molecular imaging and drug delivery. International Journal of Nanomedicine, 2016, Volume 11, 5697-5708.	3.3	28
56	Practical guide for interpreting and reporting cardiac PET measurements of myocardial blood flow: an Information Statement from the American Society of Nuclear Cardiology, and the Society of Nuclear Medicine and Molecular Imaging. Journal of Nuclear Cardiology, 2021, 28, 768-787.	1.4	28
57	Impact of Early Revascularization on Major Adverse Cardiovascular Events inÂRelation to Automatically QuantifiedÂlschemia. JACC: Cardiovascular Imaging, 2021, 14, 644-653.	2.3	28
58	Planar radionuclide angiography with a dedicated cardiac SPECT camera. Journal of Nuclear Cardiology, 2013, 20, 358-366.	1.4	27
59	Stress perfusion/metabolism imaging: A pilot study for a potential new approach to the diagnosis of coronary disease in womenâ~†â~†â~†â~â~♢. Journal of Nuclear Cardiology, 2000, 7, 205-212.	1.4	26
60	Effect of Bisoprolol on Right Ventricular Function and Brain Natriuretic Peptide in Patients With Heart Failure. Congestive Heart Failure, 2004, 10, 127-132.	2.0	26
61	Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovascular Research, 2022, 118, 2152-2164.	1.8	26
62	Scatter correction improves concordance in SPECT MPI with a dedicated cardiac SPECT solid-state camera. Journal of Nuclear Cardiology, 2015, 22, 334-343.	1.4	25
63	I-123-Metaiodobenzylguanidine imaging in patients with atrial fibrillation undergoing cardiac mapping and ablation of autonomic ganglia. Heart Rhythm, 2017, 14, 128-132.	0.3	25
64	Comparison of Framingham risk score and chest-CT identified coronary artery calcification in breast cancer patients to predict cardiovascular events. International Journal of Cardiology, 2019, 289, 138-143.	0.8	25
65	Myocardial uptake and clearance of thallium-201 in normal subjects: Comparison of dipyridamole-induced hyperemia with exercise stress. Journal of the American College of Cardiology, 1987, 10, 547-556.	1.2	24
66	Is septal glucose metabolism altered in patients with left bundle branch block and ischemic cardiomyopathy?. Journal of Nuclear Medicine, 2006, 47, 1763-8.	2.8	24
67	Evaluation of outcome and cost-effectiveness using an FDG PET-guided approach to management of patients with coronary disease and severe left ventricular dysfunction (PARR-2): rationale, design, and methods. Contemporary Clinical Trials, 2003, 24, 776-794.	2.0	22
68	Gated fluorine 18 fluorodeoxyglucose positron emission tomography: determination of global and regional left ventricular function and myocardial tissue characterization. Journal of Nuclear Cardiology, 2003, 10, 297-303.	1.4	22
69	Appropriate Use Criteria for Cardiac Computed Tomography. Journal of Thoracic Imaging, 2018, 33, 132-137.	0.8	22
70	Myocardial Ischemic Burden and Differences in Prognosis Among Patients With and Without Diabetes: Results From the Multicenter International REFINE SPECT Registry. Diabetes Care, 2020, 43, 453-459.	4.3	21
71	Cardiac Imaging in the Post-ISCHEMIA Trial Era. JACC: Cardiovascular Imaging, 2020, 13, 1815-1833.	2.3	21
72	Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: analysis of the REFINE SPECT registry. European Heart Journal Cardiovascular Imaging, 2020, 21, 567-575.	0.5	21

#	Article	IF	CITATIONS
73	Usefulness of Computed Tomographic Coronary Angiography in Patients With Acute Chest Pain With and Without High-Risk Features. American Journal of Cardiology, 2010, 106, 463-469.	0.7	20
74	Effects of Mitral Valve Surgery on Myocardial Energetics in Patients With Severe Mitral Regurgitation. Circulation: Cardiovascular Imaging, 2010, 3, 308-313.	1.3	19
75	Low-dose cardiac imaging: reducing exposure but not accuracy. Expert Review of Cardiovascular Therapy, 2012, 10, 89-104.	0.6	19
76	Advances in Cardiac SPECT and PET Imaging: Overcoming the Challenges to Reduce Radiation Exposure and Improve Accuracy. Canadian Journal of Cardiology, 2013, 29, 275-284.	0.8	19
77	Effects of Hypercapnia on Myocardial Blood Flow in Healthy Human Subjects. Journal of Nuclear Medicine, 2018, 59, 100-106.	2.8	18
78	Rates of downstream invasive coronary angiography and revascularization: computed tomographic coronary angiography vs. Tc-99m single photon emission computed tomography. European Heart Journal, 2012, 33, 776-782.	1.0	17
79	Does FDG PET-Assisted Management of Patients With Left Ventricular Dysfunction Improve Quality of Life? A Substudy of the PARR-2 Trial. Canadian Journal of Cardiology, 2012, 28, 54-61.	0.8	17
80	PET Metabolic Biomarkers for Cancer. Biomarkers in Cancer, 2016, 8s2, BIC.S27483.	3.6	17
81	Reporting of coronary artery calcification on chest CT studies in breast cancer patients at high risk of cancer therapy related cardiac events. IJC Heart and Vasculature, 2018, 18, 12-16.	0.6	17
82	Molecular imaging of coronary inflammation. Trends in Cardiovascular Medicine, 2019, 29, 191-197.	2.3	17
83	Upper reference limits of transient ischemic dilation ratio for different protocols on new-generation cadmium zinc telluride cameras: A report from REFINE SPECT registry. Journal of Nuclear Cardiology, 2020, 27, 1180-1189.	1.4	17
84	Clinical performance of Rb-82 myocardial perfusion PET and Tc-99m-based SPECT in patients with extreme obesity. Journal of Nuclear Cardiology, 2019, 26, 275-283.	1.4	16
85	Test-Retest Precision of Myocardial Blood Flow Measurements With ^{99m} Tc-Tetrofosmin and Solid-State Detector Single Photon Emission Computed Tomography. Circulation: Cardiovascular Imaging, 2020, 13, e009769.	1.3	16
86	Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease. Canadian Journal of Cardiology, 2007, 23, 801-807.	0.8	15
87	Synthesis and characterization of 123I-CMICE-013: A potential SPECT myocardial perfusion imaging agent. Bioorganic and Medicinal Chemistry, 2013, 21, 2903-2911.	1.4	15
88	Thermal Therapy: A Viable Adjunct in the Treatment of Heart Failure?. Congestive Heart Failure, 2008, 14, 180-186.	2.0	14
89	Right and left ventricular uptake with Rb-82 PET myocardial perfusion imaging: Markers of left main or 3 vessel disease. Journal of Nuclear Cardiology, 2010, 17, 52-60.	1.4	14
90	Scar imaging using multislice computed tomography versus metabolic imaging by F-18 FDG positron emission tomography: A pilot study. International Journal of Cardiology, 2013, 168, 739-745.	0.8	14

#	Article	IF	CITATIONS
91	Patient position alters attenuation effects in multipinhole cardiac SPECT. Medical Physics, 2015, 42, 1233-1240.	1.6	14
92	New solid state cadmium-zinc-telluride technology for cardiac single photon emission computed tomographic myocardial perfusion imaging. Expert Review of Medical Devices, 2017, 14, 213-222.	1.4	14
93	Comparative Effectiveness and Harms of Intraoperative Transesophageal Echocardiography in Noncardiac Surgery: A Systematic Review. Seminars in Cardiothoracic and Vascular Anesthesia, 2018, 22, 122-136.	0.4	14
94	Development of an inflammation imaging tracer, 111In-DOTA-DAPTA, targeting chemokine receptor CCR5 and preliminary evaluation in an ApoEâ^'/â^' atherosclerosis mouse model. Journal of Nuclear Cardiology, 2019, 26, 1169-1178.	1.4	14
95	Prognostic utility of splenic response ratio in dipyridamole PET myocardial perfusion imaging. Journal of Nuclear Cardiology, 2019, 26, 1888-1897.	1.4	14
96	Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry. Computers in Biology and Medicine, 2022, 145, 105449.	3.9	14
97	Prognostic value of treadmill exercise and dobutamine stress positron emission tomography. Canadian Journal of Cardiology, 2009, 25, e220-e224.	0.8	13
98	SPECT blood pool phase analysis can accurately and reproducibly quantify mechanical dyssynchrony. Journal of Nuclear Cardiology, 2010, 17, 803-810.	1.4	13
99	Quantification of myocardial blood flow using PET to improve the management of patients with stable ischemic coronary artery disease. Future Cardiology, 2014, 10, 611-631.	0.5	13
100	Prognostic Value of Phase Analysis for Predicting Adverse Cardiac Events Beyond Conventional Single-Photon Emission Computed Tomography Variables: Results From the REFINE SPECT Registry. Circulation: Cardiovascular Imaging, 2021, 14, e012386.	1.3	13
101	Evaluation of myocardial perfusion using rubidium-82 positron emission tomography after myocardial infarction in patients receiving primary stent implantation or thrombolytic therapy. American Journal of Cardiology, 2001, 88, 886-889.	0.7	12
102	Lessons From the Tc-99m Shortage. Circulation: Cardiovascular Imaging, 2013, 6, 683-691.	1.3	12
103	"Same-patient processing―for multiple cardiac SPECT studies. 2. Improving quantification repeatability. Journal of Nuclear Cardiology, 2016, 23, 1442-1453.	1.4	11
104	Adopting new gamma cameras and reconstruction algorithms: Do we need to re-establish normal reference values?. Journal of Nuclear Cardiology, 2016, 23, 807-817.	1.4	11
105	Competency-Based Medical Education. JACC: Cardiovascular Imaging, 2019, 12, 2505-2513.	2.3	11
106	Automated quantitative analysis of CZT SPECT stratifies cardiovascular risk in the obese population: Analysis of the REFINE SPECT registry. Journal of Nuclear Cardiology, 2022, 29, 727-736.	1.4	11
107	PET imaging of aortic atherosclerosis: Is combined imaging of plaque anatomy and function an amaranthine quest or conceivable reality?. Journal of Nuclear Cardiology, 2011, 18, 717-728.	1.4	10
108	Comparing slow-versus high-speed CT for attenuation correction of cardiac SPECT perfusion studies. Journal of Nuclear Cardiology, 2012, 19, 719-726.	1.4	10

#	Article	IF	CITATIONS
109	SPECT gated blood pool phase analysis of lateral wall motion for prediction of CRT response. International Journal of Cardiovascular Imaging, 2014, 30, 559-569.	0.7	10
110	Randomized Trial Comparing the Effects of Ticagrelor Versus Clopidogrel on Myocardial Perfusion in Patients With Coronary Artery Disease. Journal of the American Heart Association, 2017, 6, .	1.6	10
111	Differentiation of myocardial ischemia and necrosis by technetium 99m glucaric acid kinetics*1. Journal of Nuclear Cardiology, 1997, 4, 274-282.	1.4	9
112	Nisoldipine CC and lisinopril alone or in combination for treatment of mild to moderate systemic hypertension. Canadian Nisoldipine CC Hypertension Trial Group. , 1997, 11, 581-590.		9
113	Reproducibility of Serial Left Ventricle Perfusion, Volume, and Ejection Fraction Measurements Using Multiplexed Multipinhole SPECT in Healthy Rats and Rats After Myocardial Infarction. Journal of Nuclear Medicine, 2011, 52, 1285-1292.	2.8	9
114	Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model. Medical Physics, 2015, 42, 5075-5083.	1.6	9
115	Assessment of left ventricular ejection fraction using low radiation dose computed tomography. Journal of Nuclear Cardiology, 2016, 23, 414-421.	1.4	9
116	Technetium-99m Red Blood Cell Labeling in Patients Treated with Doxorubicin. Clinical Nuclear Medicine, 1988, 13, 169-170.	0.7	8
117	Incremental diagnostic benefit of resolution recovery software in patients with equivocal myocardial perfusion single-photon emission computed tomography (SPECT). Journal of Nuclear Cardiology, 2013, 20, 545-552.	1.4	8
118	Evaluation of Apoptosis with ^{99m} Tc-rhAnnexin V-128 and Inflammation with ¹⁸ F-FDG in a Low-Dose Irradiation Model of Atherosclerosis in Apolipoprotein E–Deficient Mice. Journal of Nuclear Medicine, 2016, 57, 1784-1791.	2.8	8
119	False-positive stress PET–CT imaging in a patient with interstitial injection. Journal of Nuclear Cardiology, 2017, 24, 1447-1450.	1.4	8
120	Single CT for attenuation correction of rest/stress cardiac SPECT perfusion imaging. Journal of Nuclear Cardiology, 2018, 25, 616-624.	1.4	8
121	A Clinical Tool to Identify Candidates for Stress-First Myocardial Perfusion Imaging. JACC: Cardiovascular Imaging, 2020, 13, 2193-2202.	2.3	8
122	Straightening out the wrinkles in technetium-99m-labeled bone scintigraphy tracer assessment of cardiac amyloidosis. Journal of Nuclear Cardiology, 2021, 28, 100-103.	1.4	8
123	Prognostic durability of coronary computed tomography angiography. European Heart Journal Cardiovascular Imaging, 2021, 22, 331-338.	0.5	8
124	Appropriate Use Criteria for Cardiac Computed Tomography. Journal of Computer Assisted Tomography, 2017, 41, 746-749.	0.5	7
125	The CatLet score and outcome prediction in acute myocardial infarction for patients undergoing primary percutaneous intervention: A proofâ€ofâ€concept study. Catheterization and Cardiovascular Interventions, 2020, 96, E220-E229.	0.7	7
126	Comparison of myocardial blood flow and flow reserve with dobutamine and dipyridamole stress using rubidium-82 positron emission tomography. Journal of Nuclear Cardiology, 2021, 28, 34-45.	1.4	7

#	Article	IF	CITATIONS
127	Quantitation of Poststress Change in Ventricular Morphology Improves Risk Stratification. Journal of Nuclear Medicine, 2021, 62, 1582-1590.	2.8	7
128	Machine learning to predict abnormal myocardial perfusion from pre-test features. Journal of Nuclear Cardiology, 2022, 29, 2393-2403.	1.4	7
129	Practicing safe SPECT: Caffeine abstinence in nuclear myocardial perfusion imaging. Journal of Nuclear Cardiology, 2008, 15, 709-718.	1.4	6
130	Comparison of attenuation, dual-energy-window, and model-based scatter correction of low-count SPECT to 82Rb PET/CT quantified myocardial perfusion scores. Journal of Nuclear Cardiology, 2013, 20, 785-796.	1.4	6
131	β2-adrenergic stress evaluation of coronary endothelial-dependent vasodilator function in mice using 11C-acetate micro-PET imaging of myocardial blood flow and oxidative metabolism. EJNMMI Research, 2014, 4, 68.	1.1	6
132	Characterization of the four isomers of 123I-CMICE-013: A potential SPECT myocardial perfusion imaging agent. Bioorganic and Medicinal Chemistry, 2014, 22, 2033-2044.	1.4	6
133	Flow-Dependent Uptake of 123I-CMICE-013, a Novel SPECT Perfusion Agent, Compared with Standard Tracers. Journal of Nuclear Medicine, 2015, 56, 764-770.	2.8	6
134	Prognostic value of vasodilator response using rubidium-82 positron emission tomography myocardial perfusion imaging in patients with coronary artery disease. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 538-548.	3.3	6
135	The CatLet score: a new coronary angiographic scoring tool accommodating the variable coronary anatomy for the first time. Journal of Thoracic Disease, 2019, 11, 5199-5209.	0.6	6
136	Reduced acquisition times for measurement of myocardial blood flow with 99mTc-tetrofosmin and solid-state detector SPECT. Journal of Nuclear Cardiology, 2021, 28, 2518-2529.	1.4	6
137	Internal validation of myocardial flow reserve PET imaging using stress/rest myocardial activity ratios with Rb-82 and N-13-ammonia. Journal of Nuclear Cardiology, 2021, 28, 835-850.	1.4	6
138	Acquisition, Processing, and Interpretation of PET 18F-FDG Viability and Inflammation Studies. Current Cardiology Reports, 2021, 23, 124.	1.3	6
139	Comparison of diabetes to other prognostic predictors among patients referred for cardiac stress testing: A contemporary analysis from the REFINE SPECT Registry. Journal of Nuclear Cardiology, 2022, 29, 3003-3014.	1.4	6
140	Spontaneous Drainage of Paravalvular Abscess Diagnosed by Transesophageal Echocardiography. Journal of the American Society of Echocardiography, 1991, 4, 397-400.	1.2	5
141	Nuclear perfusion imaging for functional evaluation of patients with known or suspected coronary artery disease: the future is now. Future Cardiology, 2012, 8, 603-622.	0.5	5
142	Impact of SPECT myocardial perfusion imaging on cardiac care. Expert Review of Cardiovascular Therapy, 2014, 12, 1247-1249.	0.6	5
143	Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome. Medical Physics, 2014, 41, 072506.	1.6	5
144	The role of nuclear cardiac imaging in risk stratification of sudden cardiac death. Journal of Nuclear Cardiology, 2016, 23, 1380-1398.	1.4	5

#	Article	IF	CITATIONS
145	Effect of proton pump inhibitors on Rubidium-82 gastric uptake using positron emission tomography myocardial perfusion imaging. Journal of Nuclear Cardiology, 2020, 27, 1443-1451.	1.4	5
146	Does electrocardiographic Q wave burden predict the extent of scarring or hibernating myocardium as quantified by positron emission tomography?. Canadian Journal of Cardiology, 2005, 21, 51-6.	0.8	5
147	Effects of CTâ€based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake. Medical Physics, 2015, 42, 1818-1824.	1.6	4
148	The dream of imaging coronary artery inflammation with FDG PET/CT imaging. Journal of Nuclear Cardiology, 2017, 24, 1171-1174.	1.4	4
149	The evolving landscape of nuclear imaging in cardiac amyloidosis. Journal of Nuclear Cardiology, 2020, 27, 210-214.	1.4	4
150	Role of PET/CT in Assessing Cardiac Sarcoidosis. , 2015, , 49-78.		4
151	Correlations of Regional Wall Motion and Myocardial Perfusion Patients with and without Anterior Precordial ST Segment Depression during Acute Inferior Myocardial Infarction. American Journal of Noninvasive Cardiology, 1987, 1, 81-87.	0.1	3
152	Identification of Inflamed Aortic Plaque in Conventional Fluorodeoxyglucose–Positron Emission Tomography Myocardial Viability Studies. Canadian Journal of Cardiology, 2013, 29, 1069-1075.	0.8	3
153	Toxicological Evaluation of a Rotenone Derivative in Rodents for Clinical Myocardial Perfusion Imaging. Cardiovascular Toxicology, 2014, 14, 170-182.	1.1	3
154	Acute and subacute toxicity studies of CMICE-013, a novel iodinated rotenone-based myocardial perfusion tracer, in Sprague Dawley rats and Gottingen minipigs. Regulatory Toxicology and Pharmacology, 2016, 80, 195-209.	1.3	3
155	Coronary Artery Disease in French Canadians—Investigation of a Suggested Vulnerable Population. Canadian Journal of Cardiology, 2016, 32, 1240-1245.	0.8	3
156	False-positive 13N-ammonia positron emission tomography perfusion scan caused by misalignment of adjacent lung activity during attenuation correction. Journal of Nuclear Cardiology, 2018, 25, 1056-1058.	1.4	3
157	SPECT quantification of myocardial blood flow: A journey of a thousand miles begins with a single step (Lao Tzu, Chinese philosopher, 604-531 BC). Journal of Nuclear Cardiology, 2019, 26, 772-774.	1.4	3
158	Impact of the ISCHEMIA Trial on Stress Nuclear Myocardial Perfusion Imaging. Journal of Nuclear Medicine, 2020, 61, 962-964.	2.8	3
159	Prognostic importance of coincidental coronary artery calcification on FDG-PET/CT oncology studies. International Journal of Cardiovascular Imaging, 2021, 37, 1479-1488.	0.7	3
160	Prevalence and predictors of automatically quantified myocardial ischemia within a multicenter international registry. Journal of Nuclear Cardiology, 2022, 29, 3221-3232.	1.4	3
161	Measurement of both left ventricular function and regional myocardial perfusion with 133Xe in dogs. European Journal of Nuclear Medicine and Molecular Imaging, 1987, 12, 533-541.	2.2	2
162	Cross-talk correction for dual-isotope imaging with a dedicated cardiac SPECT camera. , 2010, , .		2

162 $Cross-talk\ correction\ for\ dual-isotope\ imaging\ with\ a\ dedicated\ cardiac\ SPECT\ camera.\ ,\ 2010,\ ,\ .$

#	Article	IF	CITATIONS
163	Quantification of Myocardial Blood Flow with CZT SPECT Imaging: Is It Ready for Clinical Use?. Current Cardiovascular Imaging Reports, 2017, 10, 1.	0.4	2
164	Emerging role of echocardiography, cardiac magnetic resonance imaging and 99mTc-labeled bone tracer scintigraphy for the diagnosis of cardiac amyloidosis. Journal of Nuclear Cardiology, 2018, 25, 2080-2083.	1.4	2
165	Are there any guarantees with the warranty period for normal stress SPECT myocardial perfusion imaging?. Journal of Nuclear Cardiology, 2020, 27, 542-546.	1.4	2
166	Evolving use of PET viability imaging. Journal of Nuclear Cardiology, 2022, 29, 1000-1002.	1.4	2
167	On the roles of reproducibility, ethics, and statistical modeling in medical research. Journal of Nuclear Cardiology, 2021, 28, 855-858.	1.4	2
168	Differences in Prognostic Value of Myocardial Perfusion Single-Photon Emission Computed Tomography Using High-Efficiency Solid-State Detector Between Men and Women in a Large International Multicenter Study. Circulation: Cardiovascular Imaging, 2022, 15, .	1.3	2
169	Comparison of Tc-99m Sestamibi Perfusion Imaging and Echocardiography Using an Arbutamine Infusion for the Detection of Coronary Artery Disease. American Journal of Cardiology, 1997, 79, 1518-1521.	0.7	1
170	Cutaneous drug eruption from aminophylline use during dipyridamole nuclear stress testing. Journal of Nuclear Cardiology, 2010, 17, 934-936.	1.4	1
171	Canadian Multiethnicity—Differences in Coronary Artery Disease Prevalence and Progression and Relevance to Cardiac Imaging. Current Cardiovascular Imaging Reports, 2015, 8, 1.	0.4	1
172	How to Write a Good Myocardial Perfusion Imaging Report. Annals of Nuclear Cardiology, 2016, 2, 162-166.	0.0	1
173	Therapeutically Targeting the Kinase Activity or Gene Expression of RIP1 Reduces Inflammation-driven Atherosclerosis and Promotes Plaque Stability. Atherosclerosis Supplements, 2018, 32, 11-12.	1.2	1
174	A big step towards clinical implementation of myocardial blood flow quantification with CZT SPECT. Journal of Nuclear Cardiology, 2021, 28, 1487-1489.	1.4	1
175	The potential for PET-guided revascularization of coronary artery disease. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1218-1221.	3.3	1
176	Cardiac myocardial perfusion imaging with new SPECT cameras: Comparing apples and oranges. Journal of Nuclear Cardiology, 2020, 27, 1270-1273.	1.4	1
177	Editorial commentary: Potential for personalized imaging with new radiotracers and cardiac PET. Trends in Cardiovascular Medicine, 2020, 30, 20-21.	2.3	1
178	Comparison of coronary CT angiography versus functional imaging for CABG patients: A resource utilization analysis. IJC Heart and Vasculature, 2020, 27, 100494.	0.6	1
179	Site qualification and clinical interpretation standards for 99mTc-SPECT perfusion imaging in a multi-center study of MITNEC (Medical Imaging Trials Network of Canada). Journal of Nuclear Cardiology, 2021, 28, 2712-2725.	1.4	1
180	The potential of regional myocardial blood flow measurement with SPECT. Journal of Nuclear Cardiology, 2021, 28, 260-262.	1.4	1

#	Article	IF	CITATIONS
181	Added value to stress myocardial perfusion imaging studies with measurement of left ventricular mass. Journal of Nuclear Cardiology, 2022, 29, 2374-2377.	1.4	1
182	Focus Issue on Cardiac Sarcoidosis from ICNC-12 Symposium on Advanced Imaging in Cardiac Sarcoidosis. Annals of Nuclear Cardiology, 2015, 1, 77-78.	0.0	1
183	Static CT myocardial perfusion imaging: image quality, artifacts including distribution and diagnostic performance compared to 82Rb PET. European Journal of Hybrid Imaging, 2022, 6, 1.	0.6	1
184	Synthetic quality of some analytic quantities. Journal of the American College of Cardiology, 1988, 11, 450-451.	1.2	0
185	"Double Chamber―Right Ventricle Due to Prominent Trabeculation. Clinical Nuclear Medicine, 1995, 20, 830-831.	0.7	0
186	24 hour blood pressure control with once-daily versus twice-daily formulations of diltiazem. Cardiovascular Drugs and Therapy, 1995, 9, 799-807.	1.3	0
187	Noninvasive cardiovascular imaging in coronary artery disease. Imaging in Medicine, 2010, 2, 271-288.	0.0	0
188	Stress myocardial perfusion imaging in the elderly. Journal of Nuclear Cardiology, 2018, 25, 72-74.	1.4	0
189	More evidence for adequate test–retest repeatability of myocardial blood flow quantification with 82Rb PET/CT. Journal of Nuclear Cardiology, 2021, 28, 2872-2875.	1.4	0
190	How to Write a Good Myocardial Perfusion Imaging Report. Annals of Nuclear Cardiology, 2016, 2, 162-166.	0.0	0
191	Atypical Presentation of Cardiac Sarcoidosis and the Role of Multimodality Imaging. Circulation: Cardiovascular Imaging, 0, , .	1.3	0