Wei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2723520/publications.pdf Version: 2024-02-01

MEL MANC

#	Article	IF	CITATIONS
1	Acid-responsive aggregated SERS nanoparticles for improved tumor diagnosis. Materials Chemistry Frontiers, 2022, 6, 644-651.	5.9	2
2	A nano-catalyst promoting endogenous NO production to enhance chemotherapy efficacy by vascular normalization. Materials Chemistry Frontiers, 2022, 6, 1269-1281.	5.9	3
3	A CuS-Based Nanoplatform Catalyzing NO Generation for Tumor Vessel Improvement and Efficient Chemotherapy. ACS Applied Nano Materials, 2022, 5, 6901-6910.	5.0	4
4	Construction of an AuHQ nano-sensitizer for enhanced radiotherapy efficacy through remolding tumor vasculature. Journal of Materials Chemistry B, 2021, 9, 4365-4379.	5.8	5
5	A pH-responsive Pt-based nanoradiosensitizer for enhanced radiotherapy <i>via</i> oxidative stress amplification. Nanoscale, 2021, 13, 13735-13745.	5.6	11
6	An oxidation responsive nano-radiosensitizer increases radiotherapy efficacy by remolding tumor vasculature. Biomaterials Science, 2021, 9, 6308-6324.	5.4	15
7	Construction of a pH/TGase "Dual Key―Responsive Gold Nano-radiosensitizer with Liver Tumor-Targeting Ability. ACS Biomaterials Science and Engineering, 2021, 7, 3434-3445.	5.2	5
8	A facile composite nanoparticle promoted by photoelectron transfer and consumption for tumor combination therapy. Materials Chemistry Frontiers, 2020, 4, 3047-3056.	5.9	6
9	NIR Lightâ€Driven Bi ₂ Se ₃ â€Based Nanoreactor with "Three in One―Heminâ€Assis Cascade Catalysis for Synergetic Cancer Therapy. Advanced Functional Materials, 2020, 30, 2006883.	ted 14.9	39
10	<i>In situ</i> self-assembled biosupramolecular porphyrin nanofibers for enhancing photodynamic therapy in tumors. Nanoscale, 2020, 12, 11119-11129.	5.6	18
11	Single NIR Laser-Activated Multifunctional Nanoparticles for Cascaded Photothermal and Oxygen-Independent Photodynamic Therapy. Nano-Micro Letters, 2019, 11, 68.	27.0	56
12	One-step synthesis of Cu–SBA-15 under neutral condition and its oxidation catalytic performance. Microporous and Mesoporous Materials, 2019, 289, 109640.	4.4	87
13	Zwitterionic chitooligosaccharide-modified ink-blue titanium dioxide nanoparticles with inherent immune activation for enhanced photothermal therapy. Biomaterials Science, 2019, 7, 5027-5034.	5.4	12
14	Dual pH-responsive "charge-reversal like―gold nanoparticles to enhance tumor retention for chemo-radiotherapy. Nano Research, 2019, 12, 2815-2826.	10.4	29
15	Chitosan sulfate inhibits angiogenesis <i>via</i> blocking the VEGF/VEGFR2 pathway and suppresses tumor growth <i>in vivo</i> . Biomaterials Science, 2019, 7, 1584-1597.	5.4	19
16	A glutathione responsive nitric oxide release system based on charge-reversal chitosan nanoparticles for enhancing synergistic effect against multidrug resistance tumor. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102015.	3.3	24
17	Fluorescence-enhanced covalent organic framework nanosystem for tumor imaging and photothermal therapy. Nanoscale, 2019, 11, 10429-10438.	5.6	37
18	TGase-induced intracellular aggregation of Fe ₃ O ₄ nanoparticles for increased retention and enhanced <i>T</i> ₂ MRI. Materials Chemistry Frontiers, 2019, 3, 1365-1374.	5.9	9

Wei Wang

#	Article	IF	CITATIONS
19	Near-infrared-light induced nanoparticles with enhanced tumor tissue penetration and intelligent drug release. Acta Biomaterialia, 2019, 90, 314-323.	8.3	31
20	One-pot synthesis of acid-induced <i>in situ</i> aggregating theranostic gold nanoparticles with enhanced retention in tumor cells. Biomaterials Science, 2019, 7, 2009-2022.	5.4	13
21	Reversible Shielding between Dual Ligands for Enhanced Tumor Accumulation of ZnPc-Loaded Micelles. Nano Letters, 2019, 19, 1665-1674.	9.1	46
22	pH-Sensitive assembly/disassembly gold nanoparticles with the potential of tumor diagnosis and treatment. Science China Chemistry, 2019, 62, 105-117.	8.2	15
23	Study on the effectiveness of ligand reversible shielding strategy in targeted delivery and tumor therapy. Acta Biomaterialia, 2019, 83, 349-358.	8.3	13
24	pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 16767-16777.	8.0	26
25	Shieldable Tumor Targeting Based on pH Responsive Self-Assembly/Disassembly of Gold Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 17865-17876.	8.0	65
26	Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials, 2012, 33, 2187-2196.	11.4	247