Matthijs M Jore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2723442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and function of a family of tick-derived complement inhibitors targeting properdin. Nature Communications, 2022, 13, 317.	12.8	8
2	Human antibodies against noncircumsporozoite proteins block Plasmodium falciparum parasite development in hepatocytes. JCI Insight, 2022, 7, .	5.0	5
3	Monoclonal antibodies block transmission of genetically diverse Plasmodium falciparum strains to mosquitoes. Npj Vaccines, 2021, 6, 101.	6.0	24
4	RNA Small RNAs in Bacteria. , 2021, , 580-586.		0
5	Preclinical development of a Pfs230-Pfs48/45 chimeric malaria transmission-blocking vaccine. Npj Vaccines, 2021, 6, 120.	6.0	14
6	An inhibitor of complement C5 provides structural insights into activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 362-370.	7.1	27
7	Immunity against sexual stage <i>Plasmodium falciparum</i> and <i>Plasmodium vivax</i> parasites. Immunological Reviews, 2020, 293, 190-215.	6.0	62
8	Antibody Therapy Goes to Insects: Monoclonal Antibodies Can Block Plasmodium Transmission to Mosquitoes. Trends in Parasitology, 2020, 36, 880-883.	3.3	6
9	A Reproducible and Scalable Process for Manufacturing a Pfs48/45 Based Plasmodium falciparum Transmission-Blocking Vaccine. Frontiers in Immunology, 2020, 11, 606266.	4.8	17
10	Pfs230 and Pfs48/45 Fusion Proteins Elicit Strong Transmission-Blocking Antibody Responses Against Plasmodium falciparum. Frontiers in Immunology, 2019, 10, 1256.	4.8	51
11	Naturally acquired immunity against immature <i>Plasmodium falciparum</i> gametocytes. Science Translational Medicine, 2019, 11, .	12.4	31
12	Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nature Communications, 2018, 9, 558.	12.8	83
13	Structural basis for recognition of the malaria vaccine candidate Pfs48/45 by a transmission blocking antibody. Nature Communications, 2018, 9, 3822.	12.8	39
14	Structural delineation of potent transmission-blocking epitope I on malaria antigen Pfs48/45. Nature Communications, 2018, 9, 4458.	12.8	48
15	Expression of full-length Plasmodium falciparum P48/45 in P. berghei blood stages: A method to express and evaluate vaccine antigens. Molecular and Biochemical Parasitology, 2018, 224, 44-49.	1.1	6
16	Towards clinical development of a <i>Pf</i> s48/45-based transmission blocking malaria vaccine. Expert Review of Vaccines, 2017, 16, 329-336.	4.4	79
17	Structural and functional insights into properdin of the complement alternative pathway. Immunobiology, 2016, 221, 1225.	1.9	0
18	Structural basis for therapeutic inhibition of complement C5. Nature Structural and Molecular Biology, 2016, 23, 378-386.	8.2	94

Matthijs M Jore

#	Article	IF	CITATIONS
19	DNA-guided DNA interference by a prokaryotic Argonaute. Nature, 2014, 507, 258-261.	27.8	373
20	Prokaryotic Argonautes – variations on the RNA interference theme. Microbial Cell, 2014, 1, 158-159.	3.2	5
21	Native Tandem and Ion Mobility Mass Spectrometry Highlight Structural and Modular Similarities in Clustered-Regularly-Interspaced Shot-Palindromic-Repeats (CRISPR)-associated Protein Complexes From Escherichia coli and Pseudomonas aeruginosa. Molecular and Cellular Proteomics, 2012, 11, 1430-1441.	3.8	74
22	CRISPR Immunity Relies on the Consecutive Binding and Degradation of Negatively Supercoiled Invader DNA by Cascade and Cas3. Molecular Cell, 2012, 46, 595-605.	9.7	475
23	The CRISPRs, They Are A-Changin': How Prokaryotes Generate Adaptive Immunity. Annual Review of Genetics, 2012, 46, 311-339.	7.6	260
24	RNA in Defense: CRISPRs Protect Prokaryotes against Mobile Genetic Elements. Cold Spring Harbor Perspectives in Biology, 2012, 4, a003657-a003657.	5.5	76
25	Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 2011, 477, 486-489.	27.8	355
26	Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature Structural and Molecular Biology, 2011, 18, 529-536.	8.2	498
27	Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10098-10103.	7.1	665
28	Hâ€NSâ€mediated repression of CRISPRâ€based immunity in <i>Escherichia coli</i> K12 can be relieved by the transcription activator LeuO. Molecular Microbiology, 2010, 77, 1380-1393.	2.5	220
29	CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences, 2009, 34, 401-407.	7.5	453
30	Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science, 2008, 321, 960-964.	12.6	2,138
31	Heterologous Expression and Evaluation of Novel Plasmodium falciparum Transmission Blocking Vaccine Candidates. Frontiers in Immunology, 0, 13, .	4.8	5