Hasan Sadeghifar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/272274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cholesterol-modified lignin: A new avenue for green nanoparticles, meltable materials, and drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110685.	2.5	19
2	Lignin as a UV Light Blocker—A Review. Polymers, 2020, 12, 1134.	2.0	190
3	Perspective on Technical Lignin Fractionation. ACS Sustainable Chemistry and Engineering, 2020, 8, 8086-8101.	3.2	126
4	Fractionation of Organosolv Lignin Using Acetone:Water and Properties of the Obtained Fractions. ACS Sustainable Chemistry and Engineering, 2017, 5, 580-587.	3.2	121
5	Cellulose-Lignin Biodegradable and Flexible UV Protection Film. ACS Sustainable Chemistry and Engineering, 2017, 5, 625-631.	3.2	283
6	Macroscopic Behavior of Kraft Lignin Fractions: Melt Stability Considerations for Lignin–Polyethylene Blends. ACS Sustainable Chemistry and Engineering, 2016, 4, 5160-5166.	3.2	53
7	Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Mikrochimica Acta, 2016, 183, 2957-2964.	2.5	97
8	Effect of Fatty Acid Esterification on the Thermal Properties of Softwood Kraft Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 5238-5247.	3.2	87
9	Toward Carbon Fibers from Single Component Kraft Lignin Systems: Optimization of Chain Extension Chemistry. ACS Sustainable Chemistry and Engineering, 2016, 4, 5230-5237.	3.2	28
10	Correlations of the Antioxidant Properties of Softwood Kraft Lignin Fractions with the Thermal Stability of Its Blends with Polyethylene. ACS Sustainable Chemistry and Engineering, 2015, 3, 349-356.	3.2	141
11	Synthesis, Characterization, and Antimicrobial Efficacy of Photomicrobicidal Cellulose Paper. Biomacromolecules, 2015, 16, 2482-2492.	2.6	80
12	Synthesis and Characterization of Poly(arylene ether sulfone) Kraft Lignin Heat Stable Copolymers. ACS Sustainable Chemistry and Engineering, 2014, 2, 264-271.	3.2	41
13	Quantitative 31P NMR analysis of solid wood offers an insight into the acetylation of its components. Carbohydrate Polymers, 2014, 113, 552-560.	5.1	23
14	Kraft Lignin Chain Extension Chemistry via Propargylation, Oxidative Coupling, and Claisen Rearrangement. Biomacromolecules, 2013, 14, 3399-3408.	2.6	56
15	Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst. Industrial Crops and Products, 2013, 44, 306-314.	2.5	58
16	Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries. Industrial & Engineering Chemistry Research, 2012, 51, 16713-16720.	1.8	171
17	Toward Thermoplastic Lignin Polymers; Part II: Thermal & Polymer Characteristics of Kraft Lignin & Derivatives. BioResources, 2012, 8, .	0.5	104
18	Porphyrinâ€Cellulose Nanocrystals: A Photobactericidal Material that Exhibits Broad Spectrum Antimicrobial Activity ^{â€} . Photochemistry and Photobiology, 2012, 88, 527-536.	1.3	93

HASAN SADEGHIFAR

#	Article	IF	CITATIONS
19	Photobactericidal Porphyrin-Cellulose Nanocrystals: Synthesis, Characterization, and Antimicrobial Properties. Biomacromolecules, 2011, 12, 3528-3539.	2.6	210
20	Photoresponsive Cellulose Nanocrystals. Nanomaterials and Nanotechnology, 2011, 1, 7.	1.2	29
21	Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. Journal of Materials Science, 2011, 46, 7344-7355.	1.7	206
22	Chemical Composition of the Essential Oils From Leaves, Flowers, Stem and Root of <i>Centaurea zuvandica</i> Sosn. Journal of Essential Oil Research, 2009, 21, 357-359.	1.3	5
23	N-Methylimidazole-promoted efficient synthesis of 1,3-oxazine-4-thiones under solvent-free conditions. Monatshefte Für Chemie, 2009, 140, 467-471.	0.9	32