Bo Chai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2722734/publications.pdf

Version: 2024-02-01

172457 265206 2,828 42 43 29 citations h-index g-index papers 43 43 43 3919 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synthesis of 5-hydroxymethylfurfural from fructose catalyzed by sulfonated carbon-based solid acid. Biomass Conversion and Biorefinery, 2023, 13, 9195-9203.	4.6	3
2	Unveiling the role of Mn-Cd-S solid solution and MnS in MnxCd1-xS photocatalysts and decorating with CoP nanoplates for enhanced photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 428, 131069.	12.7	64
3	Removal of tetracycline onto KOH-activated biochar derived from rape straw: Affecting factors, mechanisms and reusability inspection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128466.	4.7	24
4	Investigation on the Preparation of Rice Straw-Derived Cellulose Acetate and Its Spinnability for Electrospinning. Polymers, 2021, 13, 3463.	4.5	8
5	Facile preparation of MIL-88B-Fe metal–organic framework with high peroxidase-like activity for colorimetric detection of hydrogen peroxide in milk and beer. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	12
6	In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. Chinese Journal of Catalysis, 2020, 41, 170-179.	14.0	64
7	Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdS heterojunctions with significantly boosted photocatalytic H2 evolution activity. Journal of Materials Science and Technology, 2020, 56, 179-188.	10.7	73
8	Few-layer WS2 decorating ZnIn2S4 with markedly promoted charge separation and photocatalytic H2 evolution activity. Applied Surface Science, 2020, 514, 145965.	6.1	63
9	A silicon-doped iridium electrode prepared by magnetron-sputtering as an advanced electrocatalyst for overall water splitting in acidic media. Sustainable Energy and Fuels, 2019, 3, 2321-2328.	4.9	9
10	Amorphous MoS ₂ decorated on uniform Cd _{0.8} Zn _{0.2} S microspheres with dramatically improved photocatalytic hydrogen evolution performance. New Journal of Chemistry, 2019, 43, 7846-7854.	2.8	9
11	Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance. Chinese Journal of Catalysis, 2019, 40, 458-469.	14.0	103
12	Construction of 2D/2D Ni ₂ P/CdS heterojunctions with significantly enhanced photocatalytic H ₂ evolution performance. Catalysis Science and Technology, 2019, 9, 6929-6937.	4.1	34
13	One-step hydrothermal preparation of MoS2 loaded on CdMoO4/CdS hybrids for efficient photocatalytic hydrogen evolution. Catalysis Communications, 2018, 110, 10-13.	3.3	9
14	In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity. Applied Surface Science, 2018, 448, 1-8.	6.1	126
15	Solvothermal fabrication of MoS2 anchored on Znln2S4 microspheres with boosted photocatalytic hydrogen evolution activity. International Journal of Hydrogen Energy, 2018, 43, 6977-6986.	7.1	65
16	Remarkably enhanced photocatalytic hydrogen evolution over MoS 2 nanosheets loaded on uniform CdS nanospheres. Applied Surface Science, 2018, 430, 523-530.	6.1	104
17	Enhanced photocatalytic activity of electrospun nanofibrous TiO 2 /g-C 3 N 4 heterojunction photocatalyst under simulated solar light. Applied Surface Science, 2018, 430, 243-252.	6.1	65
18	Effect of electrode material and electrolysis process on the preparation of electrolyzed oxidizing water. New Journal of Chemistry, 2018, 42, 12143-12151.	2.8	13

#	Article	IF	CITATIONS
19	Preparation and photocatalytic activity of TiO2-loaded Ti3C2 with small interlayer spacing. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	34
20	Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride. Applied Surface Science, 2017, 391, 376-383.	6.1	194
21	High-efficiency electrochemical hydrogen evolution based on the intermetallic Pt ₂ Si compound prepared by magnetron-sputtering. RSC Advances, 2017, 7, 1553-1560.	3.6	37
22	IrO ₂ –TiO ₂ electrocatalysts for the hydrogen evolution reaction in acidic water electrolysis without activation. New Journal of Chemistry, 2017, 41, 6152-6159.	2.8	34
23	<i>In situ</i> construction of BiOBr/Ag ₃ PO ₄ composites with enhanced visible light photocatalytic performances. Journal of Materials Research, 2017, 32, 1603-1610.	2.6	12
24	Preparation of electrolyzed oxidizing water with a platinum electrode prepared by magnetron sputtering technique. RSC Advances, 2017, 7, 45377-45384.	3.6	12
25	Electrospinning direct synthesis of magnetic ZnFe2O4/ZnO multi-porous nanotubes with enhanced photocatalytic activity. Applied Surface Science, 2017, 396, 780-790.	6.1	89
26	Photocatalytic hydrogen evolution activity over MoS2/ZnIn2S4 microspheres. Chinese Journal of Catalysis, 2017, 38, 2067-2075.	14.0	63
27	Biosorption of methylene blue from aqueous solution by natural <i>Osmanthus fragrans</i> powder. Desalination and Water Treatment, 2016, 57, 18868-18878.	1.0	1
28	Enhanced visible light photocatalytic activity of BiOI/BiOCOOH composites synthesized via ion exchange strategy. RSC Advances, 2015, 5, 7589-7596.	3.6	74
29	The electrocatalytic activity of IrO ₂ –Ta ₂ O ₅ anode materials and electrolyzed oxidizing water preparation and sterilization effect. RSC Advances, 2015, 5, 8778-8786.	3.6	31
30	Facile ion-exchange synthesis of BiOI/Bi2O2CO3 heterostructure for efficient photocatalytic activity under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2015, 26, 2296-2304.	2.2	21
31	Facile synthesis of Ag ₃ PO ₄ /C ₃ N ₄ composites with improved visible light photocatalytic activity. Journal of Materials Research, 2015, 30, 1128-1136.	2.6	29
32	Visible light photocatalytic performance of hierarchical BiOBr microspheres synthesized via a reactable ionic liquid. Materials Science in Semiconductor Processing, 2014, 23, 151-158.	4.0	30
33	Fullerene modified C ₃ N ₄ composites with enhanced photocatalytic activity under visible light irradiation. Dalton Transactions, 2014, 43, 982-989.	3.3	153
34	One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity. Ceramics International, 2014, 40, 429-435.	4.8	60
35	Synthesis of C ₆₀ -decorated SWCNTs (C ₆₀ -d-CNTs) and its TiO ₂ -based nanocomposite with enhanced photocatalytic activity for hydrogen production. Dalton Transactions, 2013, 42, 3402-3409.	3.3	101
36	Synthesis of multicomponent sulfide Ag ₂ ZnSnS ₄ as an efficient photocatalyst for H ₂ production under visible light irradiation. RSC Advances, 2013, 3, 253-258.	3.6	45

#	Article	IF	CITATION
37	Synthesis and characterization of ball-in-ball CuSCN hollow architecture. Materials Letters, 2013, 93, 56-59.	2.6	6
38	Walnut-like In2S3 microspheres: ionic liquid-assisted solvothermal synthesis, characterization and formation mechanism. Nanoscale, 2012, 4, 2372.	5.6	30
39	Graphitic carbon nitride (g-C3N4)–Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Physical Chemistry Chemical Physics, 2012, 14, 16745.	2.8	479
40	Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation. Dalton Transactions, 2012, 41, 1179-1186.	3.3	143
41	Template-Free Hydrothermal Synthesis of Znln ₂ S ₄ Floriated Microsphere as an Efficient Photocatalyst for H ₂ Production under Visible-Light Irradiation. Journal of Physical Chemistry C, 2011, 115, 6149-6155.	3.1	184
42	Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light. Journal of Materials Chemistry, 2011, 21, 14587.	6.7	105
43	Water/iâ€Propanol/nâ€Butanol Microemulsions. Journal of Dispersion Science and Technology, 2008, 29, 280-283.	2.4	13