
Ignacio Fdez GalvÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2722655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of conical intersection seam topography in the chemiexcitation of 1,2-dioxetanes. Physical Chemistry Chemical Physics, 2022, 24, 1638-1653.	2.8	12
2	Photophysical characterization and fluorescence cell imaging applications of 4- <i>N</i> -substituted benzothiadiazoles. RSC Advances, 2022, 12, 14544-14550.	3.6	3
3	Restricted-Variance Constrained, Reaction Path, and Transition State Molecular Optimizations Using Gradient-Enhanced Kriging. Journal of Chemical Theory and Computation, 2021, 17, 571-582.	5.3	20
4	Exact semi-classical light–matter interaction operator applied to two-photon processes with strong relativistic effects. Journal of Chemical Physics, 2020, 153, 024114.	3.0	5
5	Restricted-Variance Molecular Geometry Optimization Based on Gradient-Enhanced Kriging. Journal of Chemical Theory and Computation, 2020, 16, 3989-4001.	5.3	28
6	Impact of Excited-State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes. Journal of the American Chemical Society, 2020, 142, 10942-10954.	13.7	37
7	Modern quantum chemistry with [Open]Molcas. Journal of Chemical Physics, 2020, 152, 214117.	3.0	281
8	Machine learning for analysing ab initio molecular dynamics simulations. Journal of Physics: Conference Series, 2020, 1412, 042003.	0.4	6
9	Non-radiative decay and fragmentation in water molecules after 1a1â^'14a1 excitation and core ionization studied by electron-energy-resolved electron–ion coincidence spectroscopy. Journal of Chemical Physics, 2020, 152, 074302.	3.0	2
10	Competition between ring-puckering and ring-opening excited state reactions exemplified on 5H-furan-2-one and derivatives. Journal of Chemical Physics, 2020, 152, 064301.	3.0	8
11	Spectroscopy of linear and circular polarized light with the exact semiclassical light–matter interaction. Annual Reports in Computational Chemistry, 2019, 15, 39-76.	1.7	6
12	OpenMolcas: From Source Code to Insight. Journal of Chemical Theory and Computation, 2019, 15, 5925-5964.	5.3	661
13	How machine learning can assist the interpretation of <i>ab initio</i> molecular dynamics simulations and conceptual understanding of chemistry. Chemical Science, 2019, 10, 2298-2307.	7.4	80
14	Chemiexcitation without the Peroxide Bond? Replacing Oxygen with other Heteroatoms. ChemPhotoChem, 2019, 3, 957-967.	3.0	4
15	Chemi- and Bioluminescence of Cyclic Peroxides. Chemical Reviews, 2018, 118, 6927-6974.	47.7	265
16	Uncontracted basis sets for ab initio calculations of muonic atoms and molecules. International Journal of Quantum Chemistry, 2018, 118, e25755.	2.0	3
17	Inner projection techniques for the low-cost handling of two-electron integrals in quantum chemistry. Molecular Physics, 2017, 115, 2052-2064.	1.7	11
18	QM/MM Study of Substituent and Solvent Effects on the Excited State Dynamics of the Photoactive Yellow Protein Chromophore, Journal of Chemical Theory and Computation, 2017, 13, 737-748	5.3	8

#	Article	IF	CITATIONS
19	Optomechanical Control of Quantum Yield in <i>Trans</i> – <i>Cis</i> Ultrafast Photoisomerization of a Retinal Chromophore Model. Angewandte Chemie - International Edition, 2017, 56, 3842-3846.	13.8	24
20	Optomechanical Control of Quantum Yield in <i>Trans</i> – <i>Cis</i> Ultrafast Photoisomerization of a Retinal Chromophore Model. Angewandte Chemie, 2017, 129, 3900-3904.	2.0	15
21	Triplet versus singlet chemiexcitation mechanism in dioxetanone: a CASSCF/CASPT2 study. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	8
22	Dynamical Insights into the Decomposition of 1,2-Dioxetane. Journal of Chemical Theory and Computation, 2017, 13, 2448-2457.	5.3	25
23	Unraveling factors leading to efficient norbornadiene–quadricyclane molecular solar-thermal energy storage systems. Journal of Materials Chemistry A, 2017, 5, 12369-12378.	10.3	65
24	A combined theoretical and experimental study on the mechanism of spiro-adamantyl-1,2-dioxetanone decomposition. RSC Advances, 2017, 7, 17462-17472.	3.6	12
25	Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones. Physical Chemistry Chemical Physics, 2017, 19, 3955-3962.	2.8	37
26	How Do Methyl Groups Enhance the Triplet Chemiexcitation Yield of Dioxetane?. Journal of Physical Chemistry Letters, 2017, 8, 3790-3794.	4.6	24
27	<scp>Molcas</scp> 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 2016, 37, 506-541.	3.3	1,317
28	Molecular and Electronic Structure of Re2Br4(PMe3)4. Inorganic Chemistry, 2016, 55, 7111-7116.	4.0	1
29	Analytical State-Average Complete-Active-Space Self-Consistent Field Nonadiabatic Coupling Vectors: Implementation with Density-Fitted Two-Electron Integrals and Application to Conical Intersections. Journal of Chemical Theory and Computation, 2016, 12, 3636-3653.	5.3	112
30	Advances in computational photochemistry and chemiluminescence of biological and nanotechnological molecules. Photochemistry, 2016, , 16-60.	0.2	4
31	Constrained numerical gradients and composite gradients: Practical tools for geometry optimization and potential energy surface navigation. Journal of Computational Chemistry, 2015, 36, 1698-1708.	3.3	5
32	A new QM/MM method oriented to the study of ionic liquids. Journal of Computational Chemistry, 2015, 36, 1893-1901.	3.3	2
33	Substituent and Solvent Effects on the UV–vis Absorption Spectrum of the Photoactive Yellow Protein Chromophore. Journal of Physical Chemistry A, 2015, 119, 5504-5514.	2.5	13
34	Accelerating QM/MM Calculations by Using the Mean Field Approximation. Challenges and Advances in Computational Chemistry and Physics, 2015, , 135-152.	0.6	0
35	Chapter 2. Recent method developments and applications in computational photochemistry, chemiluminescene and bioluminescence. Photochemistry, 2014, , 11-42.	0.2	3
36	S ₀ → S ₃ transition in recombination products of photodissociated dihalomethanes. Molecular Physics, 2014, 112, 575-582.	1.7	1

#	Article	IF	CITATIONS
37	A theoretical analysis of the intrinsic light-harvesting properties of xanthopterin. Computational and Theoretical Chemistry, 2014, 1040-1041, 230-236.	2.5	1
38	Theoretical Study of Solvent Effects on the Ground and Low-Lying Excited Free Energy Surfaces of a Push–Pull Substituted Azobenzene. Journal of Physical Chemistry B, 2014, 118, 12518-12530.	2.6	18
39	Solvent Effects on the Absorption Spectra of the <i>para</i> -Coumaric Acid Chromophore in Its Different Protonation Forms. Journal of Chemical Theory and Computation, 2013, 9, 4481-4494.	5.3	12
40	Theoretical Study of the Preferential Solvation Effect on the Solvatochromic Shifts of <i>para</i> -Nitroaniline. Journal of Physical Chemistry B, 2013, 117, 2466-2474.	2.6	24
41	Simultaneous Solvent and Counterion Effects on the Absorption Properties of a Model of the Rhodopsin Chromophore. Journal of Chemical Theory and Computation, 2013, 9, 1548-1556.	5.3	14
42	Theoretical study of the conformational equilibrium of 1,4-dioxane in gas phase, neat liquid, and dilute aqueous solutions. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	10
43	Dual Fluorescence of Fluorazene in Solution: A Computational Study. Journal of Chemical Theory and Computation, 2011, 7, 3694-3701.	5.3	3
44	Study on the conformational equilibrium of the alanine dipeptide in water solution by using the averaged solvent electrostatic potential from molecular dynamics methodology. Journal of Chemical Physics, 2011, 135, 194502.	3.0	26
45	Solvent Effects on the Structure and Spectroscopy of the Emitting States of 1-Phenylpyrrole. Journal of Chemical Theory and Computation, 2011, 7, 1850-1857.	5.3	14
46	Solvent Effects on the Radiative and Nonradiative Decay of a Model of the Rhodopsin Chromophore. Journal of Chemical Theory and Computation, 2011, 7, 4050-4059.	5.3	26
47	Theoretical study of the role of solvent Stark effect in electron transitions. Theoretical Chemistry Accounts, 2011, 128, 783-793.	1.4	10
48	On the absorption properties of the excited states of DMABN. Chemical Physics Letters, 2010, 499, 100-102.	2.6	17
49	Use of the Average Solvent Potential Approach in the Study of Solvent Effects. Advances in Quantum Chemistry, 2010, 59, 59-97.	0.8	2
50	Theoretical Study of the Dual Fluorescence of 4-(N,N-Dimethylamino)benzonitrile in Solution. Journal of Chemical Theory and Computation, 2010, 6, 2445-2454.	5.3	35
51	Theoretical Study of the Competition between Intramolecular Hydrogen Bonds and Solvation in the Cys-Asn-Ser Tripeptide. Journal of Physical Chemistry B, 2010, 114, 8961-8970.	2.6	11
52	Solvatochromic Shifts on Absorption and Fluorescence Bands of <i>N</i> , <i>N</i> -Dimethylaniline. Journal of Chemical Theory and Computation, 2009, 5, 341-349.	5.3	16
53	A QM/MM study of proton transport pathways in a [NiFe] hydrogenase. Proteins: Structure, Function and Bioinformatics, 2008, 73, 195-203.	2.6	58
54	Improving the efficiency of the NEB reaction path finding algorithm. Journal of Computational Chemistry, 2008, 29, 139-143.	3.3	30

Ignacio Fdez GalvÃin

#	Article	IF	CITATIONS
55	Solvent Effects on Internal Conversions and Intersystem Crossings:Â The Radiationless De-Excitation of Acrolein in Water. Journal of Physical Chemistry B, 2008, 112, 877-884.	2.6	12
56	Retinal Models: Comparison of Electronic Absorption Spectra in the Gas Phase and in Methanol Solution. Journal of Physical Chemistry B, 2008, 112, 8815-8823.	2.6	16
57	Quantum mechanical methods applied to excitation energy transfer: A comparative analysis on excitation energies and electronic couplings. Journal of Chemical Physics, 2008, 129, 034104.	3.0	54
58	Solvent Effects on Radiative and Non-Radiative Excited State Decays. Challenges and Advances in Computational Chemistry and Physics, 2008, , 135-157.	0.6	0
59	A CASPT2//CASSCF Study of Vertical and Adiabatic Electron Transitions of Acrolein in Water Solution. Journal of Physical Chemistry B, 2007, 111, 9864-9870.	2.6	34
60	The Enamine Intermediate May Not Be Universal to Thiamine Catalysis. Angewandte Chemie - International Edition, 2007, 46, 9019-9022.	13.8	4
61	Location of conical intersections in solution using a sequential quantum mechanics/molecular dynamics method. Chemical Physics Letters, 2007, 443, 76-81.	2.6	20
62	Solvent Effects on the Low-Lying Excited States of a Model of Retinal. Journal of Physical Chemistry B, 2006, 110, 18064-18071.	2.6	24
63	An ASEP/MD study of liquid chloroform. Computational and Theoretical Chemistry, 2006, 775, 81-86.	1.5	9
64	Comparison of three effective Hamiltonian models of increasing complexity: Triazene in water as a test case. Journal of Chemical Physics, 2006, 124, 214504.	3.0	10
65	Framework-based design of a new all-purpose molecular simulation application: The Adun simulator. Journal of Computational Chemistry, 2005, 26, 1647-1659.	3.3	10
66	Theoretical Study of the 1,3-Hydrogen Shift of Triazene in Water. Journal of Physical Chemistry B, 2005, 109, 23024-23030.	2.6	16
67	A theoretical study of solvent effects on the 1(n→π*) electron transition in acrolein. Journal of Chemical Physics, 2004, 121, 3710-3716.	3.0	37
68	An averaged solvent electrostatic potential from molecular dynamics study of the anomeric equilibrium of D-xylose in aqueous solution. Theoretical Chemistry Accounts, 2004, 111, 196-203.	1.4	10
69	A new method to locate saddle points for reactions in solution by using the free-energy gradient method and the mean field approximation. Journal of Computational Chemistry, 2004, 25, 1227-1233.	3.3	40
70	ASEP/MD: A program for the calculation of solvent effects combining QM/MM methods and the mean field approximation. Computer Physics Communications, 2003, 155, 244-259.	7.5	85
71	An averaged solvent electrostatic potential/molecular dynamics study of the influence of the electron correlation on the properties of liquid hydrogen fluoride. Computational and Theoretical Chemistry, 2003, 632, 227-234.	1.5	3
72	Theoretical Study of Liquid Hydrogen Fluoride. Application of the Averaged Solvent Electrostatic Potential/Molecular Dynamics Method. Journal of Physical Chemistry B, 2003, 107, 5043-5047.	2.6	15

#	Article	IF	CITATIONS
73	Geometry optimization of molecules in solution: Joint use of the mean field approximation and the free-energy gradient method. Journal of Chemical Physics, 2003, 118, 255-263.	3.0	93
74	Theoretical Calculation of the Stark Component of the Soluteâ^'Solvent Interaction Energy. Validity of the Mean Field Approximation in the Study of Liquids and Solutions. Journal of Physical Chemistry B, 2002, 106, 4813-4817.	2.6	52
75	Beyond the Continuum Approach. , 0, , 499-605.		6