Bo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2722639/publications.pdf

Version: 2024-02-01

106	2,837	31 h-index	49
papers	citations		g-index
106	106	106	3642 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials, 2019, 9, 737.	4.1	301
2	Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review. Sensors, 2018, 18, 330.	3.8	158
3	Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. Nanomaterials, 2021, 11, 21.	4.1	115
4	Anti-Influenza Virus Activities of Flavonoids from the Medicinal PlantElsholtzia rugulosa. Planta Medica, 2008, 74, 847-851.	1.3	101
5	Carbon-coated WS ₂ nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy and Environmental Science, 2021, 14, 3184-3193.	30.8	100
6	IR-Spectral Signatures of Aromatic–Sugar Complexes: Probing Carbohydrate–Protein Interactions. Angewandte Chemie - International Edition, 2007, 46, 3644-3648.	13.8	92
7	Low-temperature operating ZnO-based NO ₂ sensors: a review. RSC Advances, 2020, 10, 39786-39807.	3. 6	82
8	Fabrication of ZnO Nanoparticles Modified by Uniformly Dispersed Ag Nanoparticles: Enhancement of Gas Sensing Performance. ACS Omega, 2020, 5, 5209-5218.	3.5	75
9	Carbohydrate molecular recognition: a spectroscopic investigation of carbohydrate–aromatic interactions. Physical Chemistry Chemical Physics, 2007, 9, 4444.	2.8	71
10	Formulation Strategies for Folate-Targeted Liposomes and Their Biomedical Applications. Pharmaceutics, 2019, 11, 381.	4.5	71
11	Electron capture induced dissociation of peptide dications. International Journal of Mass Spectrometry, 2003, 225, 83-87.	1.5	62
12	In Situ Growing Double-Layer TiO ₂ Nanorod Arrays on New-Type FTO Electrodes for Low-Concentration NH ₃ Detection at Room Temperature. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8573-8582.	8.0	52
13	Fabrication of CdS quantum dots sensitized ZnO nanorods/TiO2 nanosheets hierarchical heterostructure films for enhanced photoelectrochemical performance. Electrochimica Acta, 2019, 304, 334-341.	5.2	51
14	Simultaneous cross-linking and pore-forming electrospun carbon nanofibers towards high capacitive performance. Applied Surface Science, 2019, 479, 128-136.	6.1	50
15	Selective Dye Adsorption by Zeolitic Imidazolate Framework-8 Loaded UiO-66-NH2. Nanomaterials, 2019, 9, 1283.	4.1	49
16	On the Mechanism of Electron-Capture-Induced Dissociation of Peptide Dications from 15N-Labeling and Crown-Ether Complexation. Journal of Physical Chemistry A, 2007, 111, 9641-9643.	2.5	48
17	Surface-enhanced Raman spectroscopy investigation on human breast cancer cells. Chemistry Central Journal, 2013, 7, 37.	2.6	46
18	Preparation of Lutein-Loaded PVA/Sodium Alginate Nanofibers and Investigation of Its Release Behavior. Pharmaceutics, 2019, 11, 449.	4.5	46

#	Article	IF	CITATIONS
19	Spectral signatures and structural motifs in isolated and hydrated monosaccharides: phenyl \hat{l}_{\pm} - and \hat{l}^2 -l-fucopyranoside. Physical Chemistry Chemical Physics, 2006, 8, 129-136.	2.8	43
20	A Comprehensive Outlook of Synthetic Strategies and Applications of Redoxâ€Responsive Nanogels in Drug Delivery. Macromolecular Bioscience, 2019, 19, e1900071.	4.1	42
21	Highly sensitive H2 sensor based on PdO-decorated WO3 nanospindle p-n heterostructure. International Journal of Hydrogen Energy, 2020, 45, 31327-31340.	7.1	41
22	Electrospun Nanofibers of Polycaprolactone/Collagen as a Sustained-Release Drug Delivery System for Artemisinin. Pharmaceutics, 2021, 13, 1228.	4.5	40
23	Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers. Journal of Materials Science, 2020, 55, 7702-7714.	3.7	39
24	Ultrasensitive acetone gas sensor can distinguish the diabetic state of people and its high performance analysis by first-principles calculation. Sensors and Actuators B: Chemical, 2022, 351, 130863.	7.8	39
25	Building Up Key Segments of N-Glycans in the Gas Phase: Â Intrinsic Structural Preferences of the $\hat{l}\pm(1,3)$ and $\hat{l}\pm(1,6)$ Dimannosides. Journal of the American Chemical Society, 2006, 128, 1976-1981.	13.7	38
26	Hydration of Sugars in the Gas Phase: Regioselectivity and Conformational Choice in <i>N</i> â€Acetyl Glucosamine and Glucose. Chemistry - A European Journal, 2009, 15, 13427-13434.	3.3	38
27	Electron capture induced dissociation of peptide ions: Identification of neutral fragments from secondary collisions with cesium vapor. International Journal of Mass Spectrometry, 2007, 263, 66-70.	1.5	37
28	Synthesis of ZnO Hierarchical Structures and Their Gas Sensing Properties. Nanomaterials, 2019, 9, 1277.	4.1	36
29	Low-Cost and High-Performance ZnO Nanoclusters Gas Sensor Based on New-Type FTO Electrode for the Low-Concentration H2S Gas Detection. Nanomaterials, 2019, 9, 435.	4.1	34
30	Hierarchical Fe2O3 nanorods/TiO2 nanosheets heterostructure: Growth mechanism, enhanced visible-light photocatalytic and photoelectrochemical performances. Applied Surface Science, 2019, 475, 380-388.	6.1	34
31	Synthesis and room-temperature H2S sensing of Pt nanoparticle-functionalized SnO2 mesoporous nanoflowers. Journal of Alloys and Compounds, 2020, 842, 155813.	5.5	31
32	Coulomb Explosion upon Electron Attachment to a Four-Coordinate Monoanionic Metal Complex. Journal of the American Chemical Society, 2003, 125, 9592-9593.	13.7	30
33	Facile preparation of nitrogen-enriched hierarchical porous carbon nanofibers by Mg(OAc)2-assisted electrospinning for flexible supercapacitors. Applied Surface Science, 2018, 456, 827-834.	6.1	29
34	Light-driven fluorescence enhancement and self-assembled structural evolution of an azobenzene derivative. Journal of Materials Chemistry C, 2014, 2, 9866-9873.	5.5	24
35	Atomic Force Microscopy Based Tip-Enhanced Raman Spectroscopy in Biology. International Journal of Molecular Sciences, 2018, 19, 1193.	4.1	24
36	Enhanced cobalt-based catalysts through alloying ruthenium to cobalt lattice matrix as an efficient catalyst for overall water splitting. Electrochimica Acta, 2019, 327, 134958.	5.2	24

#	Article	IF	Citations
37	Super response and selectivity to H2S at room temperature based on CuO nanomaterials prepared by seed-induced hydrothermal growth. Materials and Design, 2021, 201, 109507.	7.0	24
38	Effect of Surfactants on the Microstructures of Hierarchical SnO2 Blooming Nanoflowers and their Gas-Sensing Properties. Nanoscale Research Letters, 2018, 13, 250.	5.7	22
39	Controlled Growth of LDH Films with Enhanced Photocatalytic Activity in a Mixed Wastewater Treatment. Nanomaterials, 2019, 9, 807.	4.1	22
40	Fabrication of in-situ grown and Pt-decorated ZnO nanoclusters on new-type FTO electrode for room-temperature detection of low-concentration H2S. Journal of Alloys and Compounds, 2021, 860, 158499.	5.5	22
41	Highly sensitive and stable H2 gas sensor based on p-PdO-n-WO3-heterostructure-homogeneously-dispersing thin film. International Journal of Hydrogen Energy, 2022, 47, 17821-17834.	7.1	21
42	A Roadmap for Achieving Sustainable Energy Conversion and Storage: Graphene-Based Composites Used Both as an Electrocatalyst for Oxygen Reduction Reactions and an Electrode Material for a Supercapacitor. Energies, 2018, 11, 167.	3.1	20
43	Hydrogen loss from nucleobase nitrogens upon electron attachment to isolated DNA and RNA nucleotide anions. Journal of Chemical Physics, 2004, 121, 4175-4179.	3.0	19
44	Preparation of a g-C3N4/UiO-66-NH2/CdS Photocatalyst with Enhanced Visible Light Photocatalytic Activity for Tetracycline Degradation. Nanomaterials, 2020, 10, 1824.	4.1	19
45	Self-assembly of hydrogen-bonded supramolecular complexes of nucleic-acid-base and fatty-acid at the liquid–solid interface. Physical Chemistry Chemical Physics, 2016, 18, 14168-14171.	2.8	18
46	Collagen coated tantalum substrate for cell proliferation. Colloids and Surfaces B: Biointerfaces, 2012, 95, 10-15.	5.0	17
47	Silver nanoparticles decorated reduced graphene oxide: Eco-friendly synthesis, characterization, biological activities and embryo toxicity studies. Environmental Research, 2022, 210, 112864.	7.5	17
48	Deformation behavior and texture evolution in an extruded Mg Li sheet with non-basal texture during tensile deformation. Materials Characterization, 2020, 159 , 110041 .	4.4	16
49	Adsorption Kinetics of Arsenic (V) on Nanoscale Zero-Valent Iron Supported by Activated Carbon. Nanomaterials, 2020, 10, 1791.	4.1	16
50	Janus 2D titanium nitride halide TiNX $<$ sub $>0.5sub>Y<sub>0.5sub> (X, Y = F, Cl, or Br, and X \hat{a}% Y) monolayers with giant out-of-plane piezoelectricity and high carrier mobility. Physical Chemistry Chemical Physics, 2021, 23, 3637-3645.$	2.8	15
51	Influence of Tunable External Stimuli on the Self-Assembly of Guanosine Supramolecular Nanostructures Studied By Atomic Force Microscope. Langmuir, 2009, 25, 13432-13437.	3.5	14
52	Building the First Hydration Shell of Deprotonated Glycine by the MCMM and ab Initio Methods. Journal of Physical Chemistry B, 2011, 115, 6213-6221.	2.6	14
53	Recent Developments in the Interactions of Classic Intercalated Ruthenium Compounds: [Ru(bpy)2dppz]2+ and [Ru(phen)2dppz]2+ with a DNA Molecule. Molecules, 2019, 24, 769.	3.8	14
54	Porous Graphitic Carbon Fibers for Fastâ€Charging Supercapacitor Applications. Energy Technology, 2020, 8, 2000050.	3.8	14

#	Article	IF	CITATIONS
55	An overview on the incorporation of graphene quantum dots on TiO2 for enhanced performances. Journal of Materials Science, 2021, 56, 6031-6051.	3.7	14
56	Building layer-by-layer 3D supramolecular nanostructures at the terephthalic acid/stearic acid interface. Chemical Communications, 2011, 47, 9155.	4.1	13
57	A strategy to prepare activated carbon fiber membranes for flexible solid-state supercapacitor applications. Journal of Materials Science, 2021, 56, 3911-3924.	3.7	13
58	Ab initio investigation of the first hydration shell of protonated glycine. Journal of Chemical Physics, 2014, 140, 085103.	3.0	12
59	Blotting Paper-Derived Activated Porous Carbon/Reduced Graphene Oxide Composite Electrodes for Supercapacitor Applications. Molecules, 2019, 24, 4625.	3.8	12
60	Electron-captureâ€"Induced dissociation of protoporphyrin IX ions. Journal of the American Society for Mass Spectrometry, 2008, 19, 809-813.	2.8	11
61	Conformational flexibility of phycocyanobilin: Monte-Carlo and DFT study. Computational and Theoretical Chemistry, 2009, 894, 9-13.	1.5	11
62	In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H ₂ S detection at room temperature*. Chinese Physics B, 2021, 30, 020701.	1.4	11
63	Precise generation of dynamic biochemical signals by controlling the programmable pump in a Yâ€shaped microfluídic chip with a "christmas tree―inlet. Electrophoresis, 2020, 41, 883-890.	2.4	10
64	Tumor microenvironment responsive nanogels as a smart triggered release platform for enhanced intracellular delivery of doxorubicin. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 385-404.	3.5	10
65	Enhanced photocatalytic performance of electrospun hollow titanium dioxide nanofibers decorated with graphene quantum dots. Journal of Materials Science, 2021, 56, 2138-2149.	3.7	10
66	Electronâ€Captureâ€Induced Dissociation of Microsolvated Diâ€and Tripeptide Monocations: Elucidation of Fragmentation Channels from Measurements of Negative Ions. ChemPhysChem, 2009, 10, 1619-1623.	2.1	9
67	Morphology and Wettability Tunable Organogel System Based on An 1,3,4-Oxadiazole Derivative. Soft Materials, 2014, 12, 396-402.	1.7	9
68	Controllable Fabrication of Au-Coated AFM Probes via a Wet-Chemistry Procedure. Nanoscale Research Letters, 2018, 13, 366.	5.7	9
69	Investigate the Nb doping position and its relationship with bulk topological superconductivity in NbxBi2Se3 by X-ray photoelectron spectra. Journal of Physics and Chemistry of Solids, 2020, 137, 109208.	4.0	9
70	The 2D Porous g-C ₃ N ₄ /CdS Heterostructural Nanocomposites with Enhanced Visible-Light-Driven Photocatalytic Activity. Journal of Nanoscience and Nanotechnology, 2020, 20, 1098-1108.	0.9	9
71	Hollow MoS ₂ Spheres Confined in Carbon Fibers for Ultralong-life Potassium Storage. ACS Applied Energy Materials, 2022, 5, 3605-3614.	5.1	9
72	Determining the structural preferences of dimannosides through the linkage constraint and hydrogen-bonded network. Computational and Theoretical Chemistry, 2013, 1010, 45-52.	2.5	8

#	Article	IF	Citations
73	Characterization of Inter- and Intramolecular Interactions of Amyloid Fibrils by AFM-Based Single-Molecule Force Spectroscopy. Journal of Nanomaterials, 2016, 2016, 1-18.	2.7	8
74	Removal of Molybdenum(VI) from Raw Water Using Nano Zero-Valent Iron Supported on Activated Carbon. Water (Switzerland), 2020, 12, 3162.	2.7	8
75	Migration of point defects and a defect pair in zinc oxide using the dimer method. Journal of Materials Research, 2012, 27, 2241-2248.	2.6	7
76	Investigation of the non-covalent interactions of molecular self-assembly by scanning tunneling microscopy using the association of aromatic structures in pyrene-4,5,9,10-tetraone and phenanthrene-9,10-dione molecules. RSC Advances, 2015, 5, 103316-103320.	3.6	7
77	The fabrication of gold colloidal nanoantennas by a full wet surface assembly technique. Applied Physics Express, 2019, 12, 064008.	2.4	7
78	Fabrication of a high-efficiency CdS@TiO ₂ @C/Ti ₃ C ₂ composite photocatalyst for the degradation of TC-HCl under visible light. New Journal of Chemistry, 2022, 46, 3305-3314.	2.8	7
79	Two-dimensional scaffold layer formations on a solid surface through xanthan polysaccharide: Temperature effect. Colloids and Surfaces B: Biointerfaces, 2009, 74, 136-139.	5.0	6
80	Direct force producing uniform ultra-thin chitosan films by atomic force microscopy. RSC Advances, 2012, 2, 2732.	3.6	6
81	Exploring the complex mechanical properties of xanthan scaffolds by AFM-based force spectroscopy. Beilstein Journal of Nanotechnology, 2014, 5, 365-373.	2.8	6
82	Enhanced photodegradation activity of electrospun porous TiO2 fibers. Functional Materials Letters, 2019, 12, 1941002.	1.2	6
83	Predicting the preferred conformations of luteolin-4′-O-β-D-glucoside in gas phase: a comparison of two computational approaches. Journal of Molecular Modeling, 2013, 19, 3619-3626.	1.8	5
84	Investigating the Co-Adsorption Behavior of Nucleic-Acid Base (Thymine and Cytosine) and Melamine at Liquid/Solid Interface. Nanoscale Research Letters, 2016, 11, 552.	5.7	5
85	The Mechanism of Adsorption, Diffusion, and Photocatalytic Reaction of Organic Molecules on TiO2 Revealed by Means of On-Site Scanning Tunneling Microscopy Observations. Catalysts, 2018, 8, 616.	3.5	5
86	A microfluidic platform enabling real-time control of dynamic biochemical stimuli to biological cells. Journal of Micromechanics and Microengineering, 2020, 30, 095011.	2.6	5
87	Nanomechanics of phospholipid LB film studied layer by layer with AFM. Chemistry Central Journal, 2014, 8, 71.	2.6	4
88	An insight into hydration structure of sodium glycinate from ab initio quantum chemical study. Journal of Molecular Modeling, 2015, 21, 234.	1.8	4
89	Improvement of Gas Sensing of Uniform Ag ₃ PO ₄ Nanoparticles to NH ₃ under the Assistant of LED Lamp with Low Power Consumption at Room Temperature. ChemistrySelect, 2021, 6, 8338-8344.	1.5	4
90	Hierarchical Ag3PO4/TiO2@C composites derived from Ti3C2 MXene for enhanced photocatalytic activity. Journal of Materials Science, 2022, 57, 5396-5409.	3.7	4

#	Article	IF	CITATIONS
91	A tree-step computational approach to simplify conformational determination of cellobiose and lactose. Carbohydrate Research, 2015, 401, 51-57.	2.3	3
92	An Effective Utilization of Solar Energy: Enhanced Photodegradation Efficiency of TiO2/Graphene-Based Composite. Energies, 2018, 11, 630.	3.1	3
93	Identify the Nematic Superconductivity of Topological Superconductor Pd\$\$_x\$\$Bi\$\$_2\$\$Te\$\$_3\$\$ by Angle-dependent Upper Critical Field Measurement. Journal of Superconductivity and Novel Magnetism, 2021, 34, 3045-3052.	1.8	3
94	Study on the Arsenate Removal from Raw As(V)-Rich Wastewater Using Zero-Valent Iron. Water (Switzerland), 2022, 14, 1118.	2.7	3
95	Oriented growth of single NaCl (100) crystal induced by Langmuir–Blodgett film. Journal of Materials Research, 2011, 26, 230-235.	2.6	2
96	Migration of defect clusters and xenon-vacancy clusters in uranium dioxide. International Journal of Modern Physics B, 2014, 28, 1450120.	2.0	2
97	Suppression of resonant auger effect with chirped x-ray free-electron laser pulse. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 035602.	1.5	2
98	Preferred conformational structures of disaccharides with \hat{l}^2 -1,4-linked N-acetylglucosamine and D-mannose in the gas phase: A tree-step computational approach study. Computational and Theoretical Chemistry, 2018, 1140, 24-31.	2.5	2
99	Real-Time Analysis of the Stability of Oil-In-Water Pickering Emulsion by Electrochemical Impedance Spectroscopy. Molecules, 2020, 25, 2904.	3.8	2
100	Adsorption of Sb(III) from Aqueous Solution by nZVI/AC: A Magnetic Fixed-Bed Column Study. Nanomaterials, 2021, 11, 1912.	4.1	2
101	Removal of Antimony(V) from Drinking Water Using nZVI/AC: Optimization of Batch and Fix Bed Conditions. Toxics, 2021, 9, 266.	3.7	2
102	Flexibility and thermal dynamic stability increase of dsDNA induced by Ru(bpy)2dppz2+ based on AFM and HRM technique. BMC Chemistry, 2019, 13, 68.	3.8	1
103	A Comparison of Theoretical and Experimental Raman Spectra of Microhydrated Sodium Glycinate. Advanced Materials Research, 2014, 934, 116-120.	0.3	0
104	Predicting the structural preferences of luteolin-7-O- \hat{l}^2 -d-glucoside in the gas phase: An application of the hybrid MCMM/QM approach. Computational and Theoretical Chemistry, 2015, 1051, 42-46.	2.5	0
105	Fabrication of 2D Hetero-Complexes With Nucleic-Acid-Base Adenine and Fatty-Acid Stearic Acid at Liquid/Solid Interface. Frontiers in Chemistry, 2019, 7, 513.	3.6	0
106	Solar Concentrator Consisting of Multiple Aspheric Reflectors. Energies, 2019, 12, 4038.	3.1	0