
Maaike van Putten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2722231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing Functional Performance in the Mdx Mouse Model. Journal of Visualized Experiments, 2014, , .	0.2	127
2	Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Scientific Reports, 2017, 7, 12575.	1.6	123
3	Environmental 24-hr Cycles Are Essential for Health. Current Biology, 2016, 26, 1843-1853.	1.8	101
4	The Effects of Low Levels of Dystrophin on Mouse Muscle Function and Pathology. PLoS ONE, 2012, 7, e31937.	1.1	96
5	Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin doubleâ€knockout mice. FASEB Journal, 2013, 27, 2484-2495.	0.2	94
6	Natural disease history of the <i>D2â€mdx</i> mouse model for Duchenne muscular dystrophy. FASEB Journal, 2019, 33, 8110-8124.	0.2	88
7	Comparison of skeletal muscle pathology and motor function of dystrophin and utrophin deficient mouse strains. Neuromuscular Disorders, 2012, 22, 406-417.	0.3	65
8	Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models. European Journal of Neuroscience, 2016, 43, 1623-1635.	1.2	59
9	Low dystrophin levels in heart can delay heart failure in mdx mice. Journal of Molecular and Cellular Cardiology, 2014, 69, 17-23.	0.9	47
10	A dystrophic Duchenne mouse model for testing human antisense oligonucleotides. PLoS ONE, 2018, 13, e0193289.	1.1	44
11	PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genetics, 2016, 12, e1006031.	1.5	41
12	A 3 months mild functional test regime does not affect disease parameters in young mdx mice. Neuromuscular Disorders, 2010, 20, 273-280.	0.3	38
13	Differential myofiber-type transduction preference of adeno-associated virus serotypes 6 and 9. Skeletal Muscle, 2015, 5, 37.	1.9	31
14	Mouse models for muscular dystrophies: an overview. DMM Disease Models and Mechanisms, 2020, 13, dmm043562.	1.2	30
15	New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. FASEB Journal, 2017, 31, 238-255.	0.2	24
16	Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 578-593.	2.9	24
17	The use of genetically humanized animal models for personalized medicine approaches. DMM Disease Models and Mechanisms, 2020, 13, dmm041673.	1.2	22
18	Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy. Molecular Therapy - Nucleic Acids, 2015, 4, e265.	2.3	20

Maaike van Putten

#	Article	IF	CITATIONS
19	Dystrophin deficiency leads to dysfunctional glutamate clearance in iPSC derived astrocytes. Translational Psychiatry, 2019, 9, 200.	2.4	18
20	Low dystrophin levels are insufficient to normalize the neuromuscular synaptic abnormalities of mdx mice. Neuromuscular Disorders, 2018, 28, 427-442.	0.3	15
21	Voluntary exercise improves muscle function and does not exacerbate muscle and heart pathology in aged Duchenne muscular dystrophy mice. Journal of Molecular and Cellular Cardiology, 2018, 125, 29-38.	0.9	15
22	Detailed genetic and functional analysis of the hDMDdel52/mdx mouse model. PLoS ONE, 2020, 15, e0244215.	1.1	15
23	Cross-sectional study into age-related pathology of mouse models for limb girdle muscular dystrophy types 2D and 2F. PLoS ONE, 2019, 14, e0220665.	1.1	14
24	Preclinical Studies on Intestinal Administration of Antisense Oligonucleotides as a Model for Oral Delivery for Treatment of Duchenne Muscular Dystrophy. Molecular Therapy - Nucleic Acids, 2014, 3, e211.	2.3	13
25	Accurate Dystrophin Quantification in Mouse Tissue; Identification of New and Evaluation of Existing Methods. Journal of Neuromuscular Diseases, 2016, 3, 77-90.	1.1	13
26	Opportunities and challenges for the development of antisense treatment in neuromuscular disorders. Expert Opinion on Biological Therapy, 2011, 11, 1025-1037.	1.4	11
27	Influence of full-length dystrophin on brain volumes in mouse models of Duchenne muscular dystrophy. PLoS ONE, 2018, 13, e0194636.	1.1	10
28	Nonclinical Exon Skipping Studies with 2′- <i>O</i> -Methyl Phosphorothioate Antisense Oligonucleotides in <i>mdx</i> and <i>mdx-utrnâ²/â²'</i> Mice Inspired by Clinical Trial Results. Nucleic Acid Therapeutics, 2019, 29, 92-103.	2.0	9
29	Sensitive and reliable evaluation of single-cut sgRNAs to restore dystrophin by a GFP-reporter assay. PLoS ONE, 2020, 15, e0239468.	1.1	8
30	What Can We Learn From Assisted Bicycle Training in a Girl With Dystrophinopathy? A Case Study. Journal of Child Neurology, 2015, 30, 659-663.	0.7	7
31	A dataâ€driven methodology reveals novel myofiber clusters in older human muscles. FASEB Journal, 2020, 34, 5525-5537.	0.2	7
32	Natural disease history of the dy2J mouse model of laminin α2 (merosin)-deficient congenital muscular dystrophy. PLoS ONE, 2018, 13, e0197388.	1.1	6
33	Moving neuromuscular disorders research forward: from novel models to clinical studies. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	6
34	Low human dystrophin levels prevent cardiac electrophysiological and structural remodelling in a Duchenne mouse model. Scientific Reports, 2021, 11, 9779.	1.6	6
35	227 th ENMC International Workshop:. Neuromuscular Disorders, 2018, 28, 185-192.	0.3	5
36	Discovering fiber type architecture over the entire muscle using dataâ€driven analysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 1240-1249.	1.1	5

MAAIKE VAN PUTTEN

#	Article	IF	CITATIONS
37	Assessment of Behavioral Characteristics With Procedures of Minimal Human Interference in the mdx Mouse Model for Duchenne Muscular Dystrophy. Frontiers in Behavioral Neuroscience, 2020, 14, 629043.	1.0	3
38	A modified diet does not ameliorate muscle pathology in a mouse model for Duchenne muscular dystrophy. PLoS ONE, 2019, 14, e0215335.	1.1	2
39	Highâ€ŧhroughput dataâ€driven analysis of myofiber composition reveals muscleâ€specific disease and ageâ€associated patterns. FASEB Journal, 2019, 33, 4046-4053.	0.2	2
40	The therapeutic potential of soluble activin type IIB receptor treatment in a limb girdle muscular dystrophy type 2D mouse model. Neuromuscular Disorders, 2022, 32, 419-435.	0.3	1